Skip to main content
Log in

1H-MR Spectroscopy in Traumatic Brain Injury

  • Review
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is a common cause of neurological damage and disability. Conventional imaging (CT scan or MRI) is highly sensitive in detecting lesions and provides important clinical information regarding the need for acute intervention. However, abnormalities detected by CT scan or conventional MRI have limited importance in the classification of the degree of clinical severity and in predicting patients’ outcome. This can be explained by the widespread microscopic tissue damage occurring after trauma, which is not observable with the conventional structural imaging methods. Advances in neuroimaging over the past two decades have greatly helped in the clinical care and management of patients with TBI. The advent of newer and more sensitive imaging techniques is now being used to better characterize the nature and evolution of injury and the underlying mechanisms that lead to progressive neurodegeneration, recovery or subsequent plasticity. This review will describe the role of proton magnetic resonance spectroscopic (MRS), an advanced MRI technique as related to its use in TBI. Proton MRS is a noninvasive approach that acquires metabolite information reflecting neuronal integrity and function from multiple brain regions and allows to assess clinical severity and to predict disease outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15:49–59.

    CAS  PubMed  Google Scholar 

  2. Povlishock JT, Katz DI. Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil. 2005;20:76–94.

    Article  PubMed  Google Scholar 

  3. Arnold DL, Matthews PM. Practical aspects of clinical applications of MRS in the brain. In: Young IR, et al., editors. MR Spectroscopy: clinical applications and techniques. London: Martin Dunitz; 1996. p. 139–59.

    Google Scholar 

  4. Ross BD, Ernst T, Kreis R, et al. 1H MRS in acute traumatic brain injury. J Magn Reson Imaging. 1998;8:829–40.

    Article  CAS  PubMed  Google Scholar 

  5. Cecil KM, Hills EC, Sandel ME, et al. Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg. 1998;88:795–801.

    Article  CAS  PubMed  Google Scholar 

  6. Condon B, Oluoch-Olunya D, Hadley D, Teasdale G, Wagstaff A. Early 1H magnetic resonance spectroscopy of acute head injury: four cases. J Neurotrauma. 1998;15:563–71.

    Article  CAS  PubMed  Google Scholar 

  7. Friedman SD, Brooks WM, Jung RE, et al. Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology. 1999;52:1384–91.

    CAS  PubMed  Google Scholar 

  8. Ashwal S, Holshouser BA, Shu SK, et al. Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol. 2000;23:114–25.

    Article  CAS  PubMed  Google Scholar 

  9. Garnett MR, Blamire AM, Corkill RG, Cadoux-Hudson TA, Rajagopalan B, Styles P. Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain. 2000;123:2046–54.

    Article  PubMed  Google Scholar 

  10. Garnett MR, Blamire AM, Rajagopalan B, Styles P, Cadoux-Hudson TA. Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: A magnetic resonance spectroscopy study. Brain. 2000;123:1403–9.

    Article  PubMed  Google Scholar 

  11. Signoretti S, Marmarou A, Fatouros P, et al. Application of chemical shift imaging for measurement of NAA in head injured patients. Acta Neurochir Suppl. 2002;81:373–5.

    CAS  PubMed  Google Scholar 

  12. Govindaraju V, Gauger GE, Manley GT, Ebel A, Meeker M, Maudsley AA. Volumetric proton spectroscopic imaging of mild traumatic brain injury. AJNR Am J Neuroradiol. 2004;25:730–7.

    PubMed  Google Scholar 

  13. Carpentier A, Galanaud D, Puybasset L, et al. Early morphologic and spectroscopic magnetic resonance in severe traumatic brain injuries can detect “invisible brain stem damage” and predict “vegetative states”. J Neurotrauma. 2006;23:674–85.

    Article  PubMed  Google Scholar 

  14. Holshouser BA, Tong KA, Ashwal S, et al. Prospective longitudinal proton magnetic resonance spectroscopic imaging in adult traumatic brain injury. J Magn Reson Imaging. 2006;24:33–40.

    Article  PubMed  Google Scholar 

  15. Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec. 2001;265:54–84.

    Article  CAS  PubMed  Google Scholar 

  16. Danielsen ER, Ross B. Magnetic resonance spectroscopy diagnosis of neurological diseases. Marcel Dekker: New York; 1999. p. 349.

    Google Scholar 

  17. Alessandri B, Samsam R, Corwin F, Fatouros P, Young HF, Bucclock RM. Acute and late changes in N-acetyl-aspartate following diffuse axonal injury in rats: an MRI spectroscopy and microdialysis study. Neurol Res. 2000;22:705–12.

    CAS  PubMed  Google Scholar 

  18. Bullock R, Zauner A, Woodward JJ, et al. Factors affecting excitatory amino acid release following severe head injury. J Neurosurg. 1998;89:507–18.

    Article  CAS  PubMed  Google Scholar 

  19. Barantin L, Le Pape A, Akoka S. A new method for absolute quantitation of MRS metabolites. Magn Reson Med. 1997;38:179–82.

    Article  CAS  PubMed  Google Scholar 

  20. De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL. Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol. 1995;38:901–9.

    Article  PubMed  Google Scholar 

  21. Gasparovic C, Yeo R, Mannell M, et al. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-Magnetic Resonance Spectroscopy study. J Neurotrauma. 2009;26:1635–43.

    Article  PubMed  Google Scholar 

  22. Marino S, Zei E, Battaglini M, et al. Acute metabolic brain changes following traumatic brain injury and their relevance to clinical severity and outcome. J Neurol Neurosurg Psychiatry. 2007;78:501–7.

    Article  PubMed  Google Scholar 

  23. Berry I, Moseley M, Germano IM, et al. Combined magnetic resonance imaging and spectroscopy in experimental regional injury of the brain. Ischemia and impact trauma. Acta Radiol Suppl. 1986;369:338–49.

    CAS  PubMed  Google Scholar 

  24. McIntosh TK, Faden AI, Bendall MR, Vink R. Traumatic brain injury in the rat: alterations in brain lactate and pH as characterized by 1H and 31P nuclear magnetic resonance. J Neurochem. 1987;49:1530–40.

    Article  CAS  PubMed  Google Scholar 

  25. Vink R, McIntosh TK, Faden AI. Nonedited 1H NMR lactate/n-acetyl aspartate ratios and the in vivo determination of lactate concentration in brain. Magn Reson Med. 1988;7:95–9.

    Article  CAS  PubMed  Google Scholar 

  26. Andersen BJ, Unterberg AW, Clarke GD, Marmarou A. Effect of posttraumatic hypoventilation on cerebral energy metabolism. J Neurosurg. 1988;68:601–7.

    Article  CAS  PubMed  Google Scholar 

  27. Cohen Y, Sanada T, Pitts LH, et al. Surface coil spectroscopic imaging: time and spatial evolution of lactate production following fluid percussion brain injury. Magn Reson Med. 1991;17:225–36.

    Article  CAS  PubMed  Google Scholar 

  28. Rubin Y, Cecil K, Wehrli S, McIntosh TK, Lenkinski RE, Smith DH. High-resolution 1H NMR spectroscopy following experimental brain trauma. J Neurotrauma. 1997;14:441–9.

    Article  CAS  PubMed  Google Scholar 

  29. Vagnozzi R, Marmarou A, Tavazzi B, et al. Changes of cerebral energy metabolism and lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury. J Neurotrauma. 1999;16:903–13.

    Article  CAS  PubMed  Google Scholar 

  30. Signoretti S, Marmarou A, Tavazzi B, Lazzarino G, Beaumont A, Vagnozzi R. N-acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. J Neurotrauma. 2001;18:977–91.

    Article  CAS  PubMed  Google Scholar 

  31. Gasparovic C, Arfai N, Smid N, Feeney DM. Decrease and recovery of N-acetylaspartate/creatine in rat brain remote from focal injury. J Neurotrauma. 2001;18:241–6.

    Article  CAS  PubMed  Google Scholar 

  32. Casey PA, McKenna MC, Fiskum G, Saraswati M, Robertson CL. Early and sustained alterations in cerebral metabolism after traumatic brain injury in immature rats. J Neurotrauma. 2008;25:603–14.

    Article  PubMed  Google Scholar 

  33. Pascual JM, Solivera J, Prieto R, et al. Time course of early metabolic changes following diffuse traumatic brain injury in rats as detected by 1H MNR spectroscopy. J Neurotrauma. 2007;24:944–59.

    Article  PubMed  Google Scholar 

  34. Schuhmann MU, Stiller D, Thomas S, Brinker T, Samii M. 1H-MR spectroscopic monitoring of posttraumatic metabolism following controlled cortical impact injury: pilot study. Acta Neurochir Suppl. 2000;76:3–7.

    CAS  PubMed  Google Scholar 

  35. Sinson G, Bagley LJ, Cecil KM, et al. Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal injury: correlation with clinical outcome after traumatic brain injury. AJNR Am J Neuroradiol. 2001;22:143–51.

    CAS  PubMed  Google Scholar 

  36. Shutter L, Tong KA, Holshouser BA. Proton MRS in acute traumatic brain injury: role for glutamate/glutamine and choline for outcome prediction. J Neurotrauma. 2004;21:1693–705.

    Article  PubMed  Google Scholar 

  37. Schuhmann MU, Stiller D, Skardelly M, et al. Metabolic changes in the vicinity of brain contusions: a proton magnetic resonance spectroscopy and histology study. J Neurotrauma. 2003;20:725–43.

    Article  PubMed  Google Scholar 

  38. Nakabayashi M, Suzaki S, Tomita H. Neural injury and recovery near cortical contusions: a clinical magnetic resonance spectroscopy study. J Neurosurg. 2007;106:370–7.

    Article  PubMed  Google Scholar 

  39. Holshouser BA, Tong KA, Ashwal S. Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. AJNR Am J Neuroradiol. 2005;26:1276–85.

    PubMed  Google Scholar 

  40. Yeo RA, Phillips JP, Jung RE, Brown AJ, Campbell RC, Brooks WM. Magnetic resonance spectroscopy detects brain injury and predicts cognitive functioning in children with brain injuries. J Neurotrauma. 2006;23:1427–35.

    Article  PubMed  Google Scholar 

  41. Aaen GS, Holshouser BA, Sheridan C, et al. Magnetic resonance spectroscopy predicts outcomes for children with nonaccidental trauma. Pediatrics. 2010;125:295–303.

    Article  PubMed  Google Scholar 

  42. Govind V, Gold S, Kaliannan K, et al. Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. J Neurotrauma. 2010;27:483–96.

    Article  PubMed  Google Scholar 

  43. Hillary FG, Liu WC, Genova HM, et al. Examining lactate in severe TBI using proton magnetic resonance spectroscopy. Brain Inj. 2007;21:981–91.

    Article  CAS  PubMed  Google Scholar 

  44. Bjartmar C, Battistuta J, Terada N, Dupree E, Trapp BD. N-acetylaspartate is an axon-specific marker of mature white matter in vivo: a biochemical and immunohistochemical study on the rat optic nerve. Ann Neurol. 2002;51:51–8.

    Article  CAS  PubMed  Google Scholar 

  45. De Stefano N, Matthews PM, Arnold DL. Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med. 1995;34:721–7.

    Article  PubMed  Google Scholar 

  46. Prichard JW. What the clinician can learn from MRS lactate measurements. NMR Biomed. 1991;4:99–102.

    Article  CAS  PubMed  Google Scholar 

  47. DeSalles AA, Kontos HA, Ward JD, Marmarou A, Becker DP. Brain tissue pH in severely head-injured patients: a report of three cases. Neurosurgery. 1987;20:297–301.

    Article  CAS  PubMed  Google Scholar 

  48. Makoroff KL, Cecil KM, Care M, Ball WS Jr. Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury. Pediatr Radiol. 2005;35:668–76.

    Article  PubMed  Google Scholar 

  49. Macmillan CS, Wild JM, Wardlaw JM, Andrews PJ, Marshall I, Easton VJ. Traumatic brain injury and subarachnoid hemorrhage: in vivo occult pathology demonstrated by magnetic resonance spectroscopy may not be ‘ischaemic’. A primary study and review of the literature. Acta Neurochir (Wien). 2002;144:853–62.

    Article  CAS  Google Scholar 

  50. Cecil KM, Lenkinski RE, Meaney DF, McIntosh TK, Smith DH. High-field proton magnetic resonance spectroscopy of a swine model for axonal injury. J Neurochem. 1998;70:2038–44.

    Article  CAS  PubMed  Google Scholar 

  51. Garnett MR, Corkill RG, Blamire AM, et al. Altered cellular metabolism following traumatic brain injury: a magnetic resonance spectroscopy study. J Neurotrauma. 2001;18:231–40.

    Article  CAS  PubMed  Google Scholar 

  52. Cernak I, Vink R, Zapple DN, et al. The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol Dis. 2004;17:29–43.

    Article  CAS  PubMed  Google Scholar 

  53. Miller BL, Chang L, Booth R, et al. In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci. 1996;58:1929–35.

    Article  CAS  PubMed  Google Scholar 

  54. Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience. 1991;45:37–45.

    Article  CAS  PubMed  Google Scholar 

  55. Holshouser BA, Ashwal S, Luh GY, et al. Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology. 1997;202:487–96.

    CAS  PubMed  Google Scholar 

  56. Holshouser BA, Ashwal S, Shu S, Hinshaw DB Jr. Proton MR spectroscopy in children with acute brain injury: comparison of short and long echo time acquisitions. J Magn Reson Imaging. 2000;11:9–19.

    Article  CAS  PubMed  Google Scholar 

  57. Brooks WM, Stidley CA, Petropoulos H, et al. Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J Neurotrauma. 2000;17:629–40.

    Article  CAS  PubMed  Google Scholar 

  58. Yoon SJ, Lee JH, Kim ST, Chun MH. Evaluation of traumatic brain injured patients in correlation with functional status by localized 1H-MR spectroscopy. Clin Rehabil. 2005;19:209–15.

    Article  PubMed  Google Scholar 

  59. Ariza M, Junquè C, Matarò M, et al. Neuropsychological correlates of basal ganglia and medial temporal lobe NAA/Cho reductions in traumatic brain injury. Arch Neurol. 2004;61:541–4.

    Article  PubMed  Google Scholar 

  60. Walz NC, Cecil KM, Wade SL, Michaud LJ. Late proton magnetic resonance spectroscopy following traumatic brain injury during early childhood: relationship with neurobehavioral outcomes. J Neurotrauma. 2008;25:94–103.

    Article  PubMed  Google Scholar 

  61. Shutter L, Tong KA, Lee A, Holshouser BA. Prognostic role of proton magnetic resonance spectroscopy in acute traumatic brain injury. J Head Trauma Rehabil. 2006;21:334–49.

    Article  PubMed  Google Scholar 

  62. Signoretti S, Marmarou A, Aygok GA, Fatouros PP, Portella G, Bullock RM. Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy. J Neurosurg. 2008;108:42–52.

    Article  CAS  PubMed  Google Scholar 

  63. Ricci R, Barbarella G, Musi P, Boldrini P, Trevisan C, Basaglia N. Localised proton MR spectroscopy of brain metabolism changes in vegetative patients. Neuroradiology. 1997;39:313–9.

    Article  CAS  PubMed  Google Scholar 

  64. Uzan M, Albayram S, Dashti SGR, Aydin S, Hanci M, Kuday C. Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury. J Neurol Neurosurg Psychiatry. 2003;74:33–8.

    Article  CAS  PubMed  Google Scholar 

  65. Kirov I, Fleysher L, Babb JS, Silver JM, Grossman RI, Gonen O. Characterizing “mild” in traumatic brain injury with proton MR spectroscopy in the thalamus: initial findings. Brain Inj. 2007;21:1147–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Marino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marino, S., Ciurleo, R., Bramanti, P. et al. 1H-MR Spectroscopy in Traumatic Brain Injury. Neurocrit Care 14, 127–133 (2011). https://doi.org/10.1007/s12028-010-9406-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-010-9406-6

Keywords

Navigation