Skip to main content

Advertisement

Log in

Gray Matter Reduction in the Vermis and CRUS-II Is Associated with Social and Interaction Deficits in Low-Functioning Children with Autistic Spectrum Disorders: a VBM-DARTEL Study

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Voxel-based morphometry (VBM) studies have reported abnormalities in brain regions involved in functions that are commonly impaired in autism spectrum disorders (ASD). However, little is known about brain structure anomalies in low-functioning (LF) young children with ASD. A VBM analysis was carried out to assess brain regions involved in ASD LF children, and a multiple regression analysis was used to examine the relationship between regional volume changes and autism symptom measures. Twenty-six LF ASD children (2–10 years) were compared with 21 controls. A VBM-Diffeomorphic Anatomical Registration analysis using Exponentiated Lie algebra (DARTEL) was used to evaluate gray matter (GM) and white matter alterations, covaried with Intelligence Quotient, age, and total brain volume. The resulting altered regions were correlated with Autism Diagnostic Interview (ADI)-Revised and Autism Diagnostic Observation Schedule (ADOS)-Generic scores. GM bilateral reduction was noted in the cerebellum (Crus II and vermis) and in the hippocampi in ASD group. GM reduction was also detected in the inferior and superior frontal gyri, in the occipital medial and superior gyri, and in the inferior temporal gyrus of the left cerebral hemisphere. In the right hemisphere, GM reduction was found in the post-central cortex and in the occipital inferior gyrus. Multiple regression analysis showed a correlation between alterations in GM volume in the cerebellum (Crus II and vermis) and ADI-communication and ADOS-total (communication and interaction) scores. These findings seem to confirm that the cerebellum is involved in integrating and regulating emotional and cognitive functions which are impaired in ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bauman M, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology. 1985;35(6):866–74.

    Article  PubMed  CAS  Google Scholar 

  2. Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;3(31):137–45.

    Article  Google Scholar 

  3. Dapretto M, Davies MS, Pfeifer JH. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nat Neurosci. 2006;9:29–30.

    Article  Google Scholar 

  4. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci. 2005;23(2–3):183–7.

    Article  PubMed  Google Scholar 

  5. Courchesne E, Redcay E, Kennedy DP. The autistic brain: birth through adulthood. Curr Opin Neurol. 2004;17:489–96.

    Article  PubMed  Google Scholar 

  6. Courchesne E, Müller RA, Saitoh O. Brain weight in autism: normal in the majority of cases, megalencephalic in rare cases. Neurology. 1999;52:1057–59.

    Article  PubMed  CAS  Google Scholar 

  7. Redcay E, Courchesne E. When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol Psychiatry. 2005;58(1):1–9.

    Article  PubMed  Google Scholar 

  8. Langen M, Durston S, Staal WG, Palmen SJ, van Engeland H. Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biol Psychiatry. 2007;62(3):262–66.

    Article  PubMed  Google Scholar 

  9. McAlonan GM, Daly E, Kumari V, Critchley HD, van Amelsvoort T, Suckling J, et al. Brain anatomy and sensorimotor gating in Asperger’s syndrome. Brain. 2002;125:1594–606.

    Article  PubMed  Google Scholar 

  10. Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet MH, et al. Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. NeuroImage. 2004;23:364–69.

    Article  PubMed  CAS  Google Scholar 

  11. Rojas DC, Peterson E, Winterrowd E, Reite ML, Rogers SJ, Tregellas JR. Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry. 2006;6:56–68.

    Google Scholar 

  12. Ke X, Hong S, Tang T, Zou B, Li H, Hang Y, et al. Voxel-based morphometry study on brain structure in children with high-functioning autism. NeuroReport. 2008;9(19):921–25.

    Article  Google Scholar 

  13. Palmen SJ, van Engeland H. Review on structural neuroimaging findings in autism. J Neural Transm. 2004;111:903–29.

    Article  PubMed  CAS  Google Scholar 

  14. Piven J, Arndt S. The cerebellum and autism. Neurology. 1995;45:398–402.

    Article  PubMed  CAS  Google Scholar 

  15. Kosaka H, Omori M, Munesue T, Ishitobi M, Matsumura Y, Takahashi T, et al. Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders. NeuroImage. 2010;4(50):1357–63.

    Article  Google Scholar 

  16. Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res. 2009;65(6):591–98.

    Article  PubMed  Google Scholar 

  17. Spencer MD, Moorhead TW, Lymer GK, Job DE, Muir WJ, Hoare P, et al. Structural correlates of intellectual impairment and autistic features in adolescents. NeuroImage. 2006;4(33):1136–44.

    Article  Google Scholar 

  18. Bonilha L, Cendes F, Rorden C, Eckert M, Dalgalarrondo P, Li LM, et al. Gray and white matter imbalance—typical structural abnormality underlying classic autism? Brain Dev. 2008;6(30):396–401.

    Article  Google Scholar 

  19. Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205–23.

    Article  PubMed  CAS  Google Scholar 

  20. Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.

    Article  PubMed  CAS  Google Scholar 

  21. Huerta M, Lord C. Diagnostic evaluation of autism spectrum disorders. Pediatr Clin North Am. 2012;59(1):103–11.

    Article  PubMed  Google Scholar 

  22. Yassa MA, Stark CE. A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe. NeuroImage. 2009;44(2):319–27.

    Article  PubMed  Google Scholar 

  23. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38(1):95–113.

    Article  PubMed  Google Scholar 

  24. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage. 2011;14:21–36.

    Article  Google Scholar 

  25. Ashburner J, Friston KJ. Voxel-based morphometry: the methods. NeuroImage. 2000;11:805–21.

    Article  PubMed  CAS  Google Scholar 

  26. Radua J, Via E, Catani M, Mataix-Cols D. Voxel-based meta-analysis of regional white-matter volume differences in autism spectrum disorder versus healthy controls. Psychol Med. 2011;41(7):1539–50.

    Article  PubMed  CAS  Google Scholar 

  27. Waiter GD, Williams JH, Murray AD, Gilchrist A, Perrett DI, Whiten A. A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. NeuroImage. 2004;2(22):619–25.

    Article  Google Scholar 

  28. Bode MK, Mattila ML, Kiviniemi V, Rahko J, Moilanen I, Ebeling H, et al. White matter in autism spectrum disorders—evidence of impaired fiber formation. Acta Radiol. 2011;52(10):1169–74.

    Article  PubMed  Google Scholar 

  29. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  PubMed  CAS  Google Scholar 

  30. Leiner H, Leiner A, Dow R. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.

    Article  PubMed  CAS  Google Scholar 

  31. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiat Clin Neurosci. 2004;16(3):367–78.

    Article  Google Scholar 

  32. Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, et al. Mapping early brain development in autism. Neuron. 2007;56(2):399–13.

    Article  PubMed  CAS  Google Scholar 

  33. Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, et al. Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol. 2002;22(2):171–75.

    Article  PubMed  Google Scholar 

  34. Fatemi SH, Stary JM, Halt AR, Realmuto GR. Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum. J Autism Dev Disord. 2001;31(6):529–35.

    Article  PubMed  CAS  Google Scholar 

  35. Verhoeven JS, De Cock P, Lagae L, Sunaert S. Neuroimaging of autism. Neuroradiology. 2010;1(52):3–14.

    Article  Google Scholar 

  36. Dalton P, Deacon R, Blamire A, Pike M, McKinlay I, Stein J, et al. Maternal neuronal antibodies associated with autism and a language disorder. Ann Neurol. 2003;53(4):533–37.

    Article  PubMed  Google Scholar 

  37. Singer HS, Morris CM, Williams PN, Yoon DY, Hong JJ, Zimmerman AW. Antibrain antibodies in children with autism and their unaffected siblings. J Neuroimmunol. 2006;178(1–2):149–55.

    Article  PubMed  CAS  Google Scholar 

  38. Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral DG, Van de Water J. Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun. 2009;23(1):64–74.

    Article  PubMed  CAS  Google Scholar 

  39. Steinlein M. Cerebellar disorders in childhood: cognitive problems. Cerebellum. 2008;7(4):607–10.

    Article  Google Scholar 

  40. Goines P, Haapanen L, Boyce R, Duncanson P, Braunschweig D, Delwiche L, et al. Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav Immun. 2011;25(3):514–23.

    Article  PubMed  CAS  Google Scholar 

  41. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.

    Article  PubMed  Google Scholar 

  42. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123:1051–61.

    Article  PubMed  Google Scholar 

  43. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.

    Article  PubMed  Google Scholar 

  44. Stanfield AC, McIntosh AM, Spencer M, Philip R, Gaur S, Lawrie SM. Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry. 2008;4(23):289–99.

    Article  Google Scholar 

  45. Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.

    Article  PubMed  CAS  Google Scholar 

  46. Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neurolinguistics. 2000;13:189–214.

    Article  Google Scholar 

  47. Bobée S, Mariette E, Tremblay-Leveau H, Caston J. Effects of early midline cerebellar lesion on cognitive and emotional functions in the rat. Behav Brain Res. 2000;112(1–2):107–17.

    Article  PubMed  Google Scholar 

  48. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.

    Article  PubMed  Google Scholar 

  49. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.

    Article  PubMed  CAS  Google Scholar 

  50. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed  Google Scholar 

  51. Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang T, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage. 2012;61(4):1213–25.

    Article  PubMed  Google Scholar 

  52. Calarge C, Andreasen NC, O’Leary DS. Visualizing how one brain understands another: a PET study of theory of mind. Am J Psychiatry. 2003;160(11):1954–64.

    Article  PubMed  Google Scholar 

  53. Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43(10):685–91.

    Article  PubMed  CAS  Google Scholar 

  54. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  55. McAlonan GM, Cheung V, Cheung C, Suckling J, Lam GY, Tai KS, et al. Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain. 2005;128:268–76.

    Article  PubMed  Google Scholar 

  56. Toal F, Daly EM, Page L, Dee ley Q, Hallahan B, Bloemen O, et al. Clinical and anatomical heterogeneity in autistic spectrum disorder: a structural MRI study. Psychol Med. 2010;7(40):1171–81.

    Article  Google Scholar 

  57. Abell F, Krams M, Ashburner J, Passingham R, Friston K, Frackowiak R, et al. The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. NeuroReport. 1999;10:1647–51.

    Article  PubMed  CAS  Google Scholar 

  58. Salmond CH, Vargha-Khadem F, Gadian DG, de Haan M, Baldeweg T. Heterogeneity in the patterns of neural abnormality in autistic spectrum disorders: evidence from ERP and MRI. Cortex. 2007;6(43):686–99.

    Article  Google Scholar 

  59. Dow R. The evolution and anatomy of the cerebellum. Biol Rev. 1942;17:179–20.

    Article  Google Scholar 

  60. Schmahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.

    Article  PubMed  CAS  Google Scholar 

  61. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20(4):953–65.

    Article  PubMed  Google Scholar 

  62. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22(11):2663–76.

    Article  PubMed  Google Scholar 

  63. Teffer K, Semendeferi K. Human prefrontal cortex: evolution, development, and pathology. Prog Brain Res. 2012;195:191–218.

    Article  PubMed  Google Scholar 

  64. Rojas DC, Smith JA, Benkers TL, Camou SL, Reite ML, Rogers SJ. Hippocampus and amygdala volumes in parents of children with autistic disorder. Am J Psychiatry. 2004;161:2038–44.

    Article  PubMed  Google Scholar 

  65. Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, et al. The amygdala is enlarged in children but not adolescents with autism; The hippocampus is enlarged at all ages. J Neurosci. 2004;28(24):6392–01.

    Article  Google Scholar 

  66. McAlonan GM, Suckling J, Wong N, Cheung V, Lienenkaemper N, Cheung C, et al. Distinct patterns of grey matter abnormality in high-functioning autism and Asperger’s syndrome. J Child Psychol Psychiatry. 2008;49(12):1287–95.

    Article  PubMed  Google Scholar 

  67. Hyde KL, Samson F, Evans AC, Mottron L. Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Hum Brain Mapp. 2010;4(31):556–66.

    Google Scholar 

  68. Riva D, Bulgheroni S, Aquino D, Di Salle F, Savoiardo M, Erbetta A. Basal forebrain involvement in low functioning autistic children: a voxel-based morphometry study. AJNR Am J Neuroradiol. 2011;32(8):1430–35.

    Article  PubMed  CAS  Google Scholar 

  69. Rizzolatti G, Craighero L. The mirror-neuron system. Annu Rev Neurosci. 2004;27:169–92.

    Article  PubMed  CAS  Google Scholar 

  70. Iacoboni M, Dapretto M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci. 2006;7(12):942–51.

    Article  PubMed  CAS  Google Scholar 

  71. Frith CD, Frith U. Interacting minds—a biological basis. Science. 1999;286:1692–95.

    Article  PubMed  CAS  Google Scholar 

  72. Williams JH, Whiten A, Suddendorf T, Perrett DI. Imitation, mirror neurons and autism. Neurosci Biobehav Rev. 2001;25(4):287–95.

    Article  PubMed  CAS  Google Scholar 

  73. Adolphs R. The social brain: neural basis of social knowledge. Ann Rev Psychol. 2009;60:693–16.

    Article  Google Scholar 

  74. Sugiura M, Kawashima R, Nakamura K, Okada K, Kato T, Nakamura A, et al. Passive and active recognition of one’s own face. Neuroimag. 2000;11(1):36–48.

    Article  CAS  Google Scholar 

  75. Sui J, Chechlacz M, Humphreys GW. Dividing the self: distinct neural substrates of task-based and automatic self-prioritization after brain damage. Cognition. 2012;122(2):150–62.

    Article  PubMed  Google Scholar 

  76. Li HJ, Chan RC, Gong QY, Liu Y, Liu SM, Shum D, et al. Facial emotion processing in patients with schizophrenia and their non-psychotic siblings: a functional magnetic resonance imaging study. Schizophr Res. 2012;134(2–3):143–50.

    Article  PubMed  Google Scholar 

  77. Schultz RT, Gauthier I, Klin A, Fulbright RK, Anderson AW, Volkmar F, et al. Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Arch Gen Psychiatry. 2000;4(57):331–40.

    Article  Google Scholar 

  78. Adolphs R, Damasco H, Tranel D, Damasco AR. Cortical systems for the recognition of emotion in facial expressions. J Neurosci. 1996;23(16):7678–87.

    Google Scholar 

  79. Hadjikhanim N, Joseph RM, Snyder J, Tager-Flusberg H. Abnormal activation of the social brain during face perception in autism. Hum Brain Mapp. 2007;5(28):441–49.

    Article  Google Scholar 

  80. Pierce K, Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry. 2001;49(8):655–64.

    Article  PubMed  CAS  Google Scholar 

  81. Webb SJ, Sparks BF, Friedman SD, Shaw DW, Giedd J, Dawson G, et al. Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Res. 2009;172(1):61–7.

    Article  PubMed  Google Scholar 

Download references

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Riva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riva, D., Annunziata, S., Contarino, V. et al. Gray Matter Reduction in the Vermis and CRUS-II Is Associated with Social and Interaction Deficits in Low-Functioning Children with Autistic Spectrum Disorders: a VBM-DARTEL Study. Cerebellum 12, 676–685 (2013). https://doi.org/10.1007/s12311-013-0469-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0469-8

Keywords

Navigation