Skip to main content
Log in

Refined Ischemic Penumbra Imaging with Tissue pH and Diffusion Kurtosis Magnetic Resonance Imaging

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Imaging has played a vital role in our mechanistic understanding of acute ischemia and the management of acute stroke patients. The most recent DAWN and DEFUSE-3 trials showed that endovascular therapy could be extended to a selected group of late-presenting stroke patients with the aid of imaging. Although perfusion and diffusion MRI have been commonly used in stroke imaging, the approximation of their mismatch as the penumbra is oversimplified, particularly in the era of endovascular therapy. Briefly, the hypoperfusion lesion includes the benign oligemia that does not proceed to infarction. Also, with prompt and effective reperfusion therapy, a portion of the diffusion lesion is potentially reversible. Therefore, advanced imaging that provides improved ischemic tissue characterization may enable new experimental stroke therapeutics and eventually further individualize stroke treatment upon translation to the clinical setting. Specifically, pH imaging captures tissue of altered metabolic state that demarcates the hypoperfused lesion into ischemic penumbra and benign oligemia, which remains promising to define the ischemic penumbra’s outer boundary. On the other hand, diffusion kurtosis imaging (DKI) differentiates the most severely damaged and irreversibly injured diffusion lesion from the portion of diffusion lesion that is potentially reversible, refining the inner boundary of the penumbra. Altogether, the development of advanced imaging has the potential to not only transform the experimental stroke research but also aid clinical translation and patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528.

    Article  PubMed  Google Scholar 

  2. Campbell BCV, de Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5(1):70.

    Article  PubMed  Google Scholar 

  3. Moussaddy A, Demchuk AM, Hill MD. Thrombolytic therapies for ischemic stroke: triumphs and future challenges. Neuropharmacology. 2018;134:272–9.

    Article  CAS  PubMed  Google Scholar 

  4. Heit JJ, Zaharchuk G, Wintermark M. Advanced neuroimaging of acute ischemic stroke: penumbra and collateral assessment. Neuroimaging Clin N Am. 2018;28(4):585–97.

    Article  PubMed  Google Scholar 

  5. Catanese L, Tarsia J, Fisher M. Acute ischemic stroke therapy overview. Circ Res. 2017;120(3):541–58.

    Article  CAS  PubMed  Google Scholar 

  6. Vilela P, Rowley HA. Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur J Radiol. 2017;96:162–72.

    Article  PubMed  Google Scholar 

  7. NINDS rt-PA Stroke Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333:1581–7.

    Article  Google Scholar 

  8. Vert C, Parra-Fariñas C, Rovira À. MR imaging in hyperacute ischemic stroke. Eur J Radiol. 2017;96:125–32.

    Article  PubMed  Google Scholar 

  9. Yang S-H, Lou M, Luo B, Jiang WJ, Liu R. Precision medicine for ischemic stroke, let us move beyond time is brain. Transl Stroke Res. 2018;9(2):93–5.

    Article  PubMed  Google Scholar 

  10. Wu L, Wu W, Tali ET, Yuh WT. Oligemia, penumbra, infarction: understanding hypoperfusion with neuroimaging. Neuroimaging Clin N Am. 2018;28(4):599–609.

    Article  PubMed  Google Scholar 

  11. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2017;378(1):11–21.

    Article  PubMed  Google Scholar 

  12. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Desai SM, Rocha M, Molyneaux BJ, Starr M, Kenmuir CL, Gross BA, et al. Thrombectomy 6-24 hours after stroke in trial ineligible patients. J NeuroIntervent Surg. 2018;10(11):1033–7.

    Article  Google Scholar 

  14. Fisher M, Xiong Y. Evaluating patients for thrombectomy. Brain Circ. 2018;4(4):153–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22.

    Article  PubMed  Google Scholar 

  16. Aoki J, Kimura K, Iguchi Y, Shibazaki K, Sakai K, Iwanaga T. FLAIR can estimate the onset time in acute ischemic stroke patients. J Neurol Sci. 2010;293(1–2):39–44.

    Article  PubMed  Google Scholar 

  17. Yoo AJ, Hakimelahi R, Rost NS, Schaefer PW, Hirsch JA, Gonzalez RG, et al. Diffusion weighted imaging reversibility in the brainstem following successful recanalization of acute basilar artery occlusion. J Neurointerv Surg. 2010;2(3):195–7.

    Article  PubMed  Google Scholar 

  18. Puig J, Shankar J, Liebeskind D, Terceño M, Nael K, Demchuk AM, et al. From “time is brain” to “imaging is brain”: a paradigm shift in the management of acute ischemic stroke. J Neuroimaging. 2020;30:562–71.

    Article  PubMed  Google Scholar 

  19. Leslie-Mazwi TM, Lev MH, Schaefer PW, Hirsch JA, González RG. MR imaging selection of acute stroke patients with emergent large vessel occlusions for thrombectomy. Neuroimaging Clin N Am. 2018;28(4):573–84.

    Article  PubMed  Google Scholar 

  20. Kidwell CS, Hsia AW. Imaging of the brain and cerebral vasculature in patients with suspected stroke: advantages and disadvantages of CT and MRI. Curr Neurol Neurosci Rep. 2006;6(1):9–16.

    Article  PubMed  Google Scholar 

  21. Leslie-Mazwi TM, Hirsch JA, Falcone GJ, Schaefer PW, Lev MH, Rabinov JD, et al. Endovascular stroke treatment outcomes after patient selection based on magnetic resonance imaging and clinical criteria. JAMA Neurol. 2016;73(1):43–9.

    Article  PubMed  Google Scholar 

  22. McTaggart RA, Yaghi S, Sacchetti DC, Haas RA, Hemendinger M, Arcuri D, et al. Mechanical embolectomy for acute ischemic stroke beyond six hours from symptom onset using MRI based perfusion imaging. J Neurol Sci. 2017;375:395–400.

    Article  PubMed  Google Scholar 

  23. Menjot de Champfleur N, et al. Efficacy of stent-retriever thrombectomy in magnetic resonance imaging versus computed tomographic perfusion-selected patients in SWIFT PRIME trial (solitaire FR with the intention for thrombectomy as primary endovascular treatment for acute ischemic stroke). Stroke. 2017;48(6):1560–6.

    Article  PubMed  Google Scholar 

  24. Almiri W, Meyer L, Politi M, Papanagiotou P. Diagnostic imaging of acute ischemic stroke. Radiologe. 2019;59(7):603–9.

    Article  CAS  PubMed  Google Scholar 

  25. Bateman M, Slater LA, Leslie-Mazwi T, Simonsen CZ, Stuckey S, Chandra RV. Diffusion and perfusion MR imaging in acute stroke: clinical utility and potential limitations for treatment selection. Top Magn Reson Imaging. 2017;26(2):77–82.

    Article  PubMed  Google Scholar 

  26. Dijkhuizen RM, van der Marel K, Otte WM, Hoff EI, van der Zijden JP, van der Toorn A, et al. Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke. Transl Stroke Res. 2012;3(1):36–43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nael K, et al. Six-minute magnetic resonance imaging protocol for evaluation of acute ischemic stroke. Stroke. 2014;45(7):1985–91.

    Article  PubMed  Google Scholar 

  28. Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36(4):557–65.

    Article  CAS  PubMed  Google Scholar 

  29. Back T. Pathophysiology of the ischemic penumbra—revision of a concept. Cell Mol Neurobiol. 1998;18(6):621–38.

    CAS  PubMed  Google Scholar 

  30. Markus HS. Cerebral perfusion and stroke. J Neurol Neurosurg Psychiatry. 2004;75(3):353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Williams SR, Proctor E, Allen K, Gadian DG, Crockard HA. Quantitative estimation of lactate in the brain by 1H NMR. Magn Reson Med. 1988;7(4):425–31.

    Article  CAS  PubMed  Google Scholar 

  32. Terrier F, et al. Lactate mapping in ischemic rat kidneys using 1H spectroscopic imaging. Investig Radiol. 1992;27(4):282–6.

    Article  CAS  Google Scholar 

  33. Dijkhuizen RM, de Graaf RA, Garwood M, Tulleken KAF, Nicolay K. Spatial assessment of the dynamics of lactate formation in focal ischemic rat brain. J Cereb Blood Flow Metab. 1999;19(4):376–9.

    Article  CAS  PubMed  Google Scholar 

  34. Hyder F, Rothman DL. Advances in imaging brain metabolism. Annu Rev Biomed Eng. 2017;19(1):485–515.

    Article  CAS  PubMed  Google Scholar 

  35. Obrenovitch TP, Garofalo O, Harris RJ, Bordi L, Ono M, Momma F, et al. Brain tissue concentrations of ATP, phosphocreatine, lactate, and tissue pH in relation to reduced cerebral blood flow following experimental acute middle cerebral artery occlusion. J Cereb Blood Flow Metab. 1988;8(6):866–74.

    Article  CAS  PubMed  Google Scholar 

  36. Paschen W, Djuricic B, Mies G, Schmidt-Kastner R, Linn F. Lactate and pH in the brain: association and dissociation in different pathophysiological states. J Neurochem. 1987;48(1):154–9.

    Article  CAS  PubMed  Google Scholar 

  37. Allen K, Busza AL, Crockard HA, Frackowiak RSJ, Gadian DG, Proctor E, et al. Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and1H nuclear magnetic resonance spectroscopy. III. Changes following ischaemia. J Cereb Blood Flow Metab. 1988;8(6):816–21.

    Article  CAS  PubMed  Google Scholar 

  38. Katsura K, Asplund B, Ekholm A, Siesjö BK. Extra- and intracellular pH in the brain during ischaemia, related to tissue lactate content in normo- and hypercapnic rats. Eur J Neurosci. 1992;4(2):166–76.

    Article  PubMed  Google Scholar 

  39. Göttler J, Kaczmarz S, Kallmayer M, Wustrow I, Eckstein HH, Zimmer C, et al. Flow-metabolism uncoupling in patients with asymptomatic unilateral carotid artery stenosis assessed by multi-modal magnetic resonance imaging. J Cereb Blood Flow Metab. 2018;39(11):2132–43.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith AG, Hill CR. Imaging assessment of acute ischaemic stroke: a review of radiological methods. Br J Radiol. 2018;91(1083):20170573.

    PubMed  Google Scholar 

  41. An H, Ford AL, Vo K, Powers WJ, Lee JM, Lin W. Signal evolution and infarction risk for apparent diffusion coefficient lesions in acute ischemic stroke are both time- and perfusion-dependent. Stroke. 2011;42(5):1276–81.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bonney PA, et al. The continued role and value of imaging for acute ischemic stroke. Neurosurgery. 2019;85(suppl_1):S23–30.

    Article  PubMed  Google Scholar 

  43. Olivot J-M, Mosimann PJ, Labreuche J, Inoue M, Meseguer E, Desilles JP, et al. Impact of diffusion-weighted imaging lesion volume on the success of endovascular reperfusion therapy. Stroke. 2013;44(8):2205–11.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rordorf G, Koroshetz WJ, Copen WA, Cramer SC, Schaefer PW, Budzik RF, et al. Regional ischemia and ischemic injury in patients with acute middle cerebral artery stroke as defined by early diffusion-weighted and perfusion-weighted MRI. Stroke. 1998;29(5):939–43.

    Article  CAS  PubMed  Google Scholar 

  45. Schaefer PW, et al. Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol. 2003;24(3):436–43.

    PubMed  PubMed Central  Google Scholar 

  46. Wu O, Ostergaard L, Sorensen AG. Technical aspects of perfusion-weighted imaging. Neuroimaging Clin N Am. 2005;15(3):623–37 xi.

    Article  PubMed  Google Scholar 

  47. Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102–16.

    Article  PubMed  Google Scholar 

  48. Haller S, Zaharchuk G, Thomas DL, Lovblad KO, Barkhof F, Golay X. Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology. 2016;281(2):337–56.

    Article  PubMed  Google Scholar 

  49. Bokkers RP, Hernandez DA, Merino JG, Mirasol RV, van Osch M, Hendrikse J, et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke. 2012;43(5):1290–4.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang DJJ, Alger JR, Qiao JX, Hao Q, Hou S, Fiaz R, et al. The value of arterial spin-labeled perfusion imaging in acute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced MRI. Stroke. 2012;43(4):1018–24.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wintermark M, et al. Comparative overview of brain perfusion imaging techniques. Stroke. 2005;36(9):e83–99.

    Article  PubMed  Google Scholar 

  52. Kidwell CS, Alger JR, Saver JL. Evolving paradigms in neuroimaging of the ischemic penumbra. Stroke. 2004;35(11 Suppl 1):2662–5.

    Article  PubMed  Google Scholar 

  53. Schlaug G, Benfield A, Baird AE, Siewert B, Lovblad KO, Parker RA, et al. The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology. 1999;53(7):1528–37.

    Article  CAS  PubMed  Google Scholar 

  54. Wu O, Koroshetz WJ, Østergaard L, Buonanno FS, Copen WA, Gonzalez RG, et al. Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke. 2001;32(4):933–42.

    Article  CAS  PubMed  Google Scholar 

  55. Bristow MS, Simon JE, Brown RA, Eliasziw M, Hill MD, Coutts SB, et al. MR perfusion and diffusion in acute ischemic stroke: human gray and white matter have different thresholds for infarction. J Cereb Blood Flow Metab. 2005;25(10):1280–7.

    Article  PubMed  Google Scholar 

  56. Arakawa S, Wright PM, Koga M, Phan TG, Reutens DC, Lim I, et al. Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke. 2006;37(5):1211–6.

    Article  PubMed  Google Scholar 

  57. Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ. Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med. 2007;58(6):1232–41.

    Article  PubMed  Google Scholar 

  58. Zaharchuk G. Arterial spin label imaging of acute ischemic stroke and transient ischemic attack. Neuroimaging Clin N Am. 2011;21(2):285–301 x.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 2003;34(11):2729–35.

    Article  PubMed  Google Scholar 

  60. Nicoli F, Lefur Y, Denis B, Ranjeva JP, Confort-Gouny S, Cozzone PJ. Metabolic counterpart of decreased apparent diffusion coefficient during hyperacute ischemic stroke: a brain proton magnetic resonance spectroscopic imaging study. Stroke. 2003;34(7):e82–7.

    Article  CAS  PubMed  Google Scholar 

  61. Geisler BS, Brandhoff F, Fiehler J, Saager C, Speck O, Röther J, et al. Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke. 2006;37(7):1778–84.

    Article  PubMed  Google Scholar 

  62. An H, Liu Q, Chen Y, Lin W. Evaluation of MR-derived cerebral oxygen metabolic index in experimental hyperoxic hypercapnia, hypoxia, and ischemia. Stroke. 2009;40(6):2165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kidwell CS, Saver JL, Mattiello J, Starkman S, Vinuela F, Duckwiler G, et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol. 2000;47(4):462–9.

    Article  CAS  PubMed  Google Scholar 

  64. Labeyrie MA, Turc G, Hess A, Hervo P, Mas JL, Meder JF, et al. Diffusion lesion reversal after thrombolysis: a MR correlate of early neurological improvement. Stroke. 2012;43(11):2986–91.

    Article  PubMed  Google Scholar 

  65. Soize S, Tisserand M, Charron S, Turc G, Ben Hassen W, Labeyrie MA, et al. How sustained is 24-hour diffusion-weighted imaging lesion reversal? Serial magnetic resonance imaging in a patient cohort thrombolyzed within 4.5 hours of stroke onset. Stroke. 2015;46(3):704–10.

    Article  PubMed  Google Scholar 

  66. Tisserand M, Turc G, Charron S, Legrand L, Edjlali M, Seners P, et al. Does diffusion lesion volume above 70 mL preclude favorable outcome despite post-thrombolysis recanalization? Stroke. 2016;47(4):1005–11.

    Article  PubMed  Google Scholar 

  67. Inoue M, Mlynash M, Christensen S, Wheeler HM, Straka M, Tipirneni A, et al. Early diffusion-weighted imaging reversal after endovascular reperfusion is typically transient in patients imaged 3 to 6 hours after onset. Stroke. 2014;45(4):1024–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yoo J, Choi JW, Lee SJ, Hong JM, Hong JH, Kim CH, et al. Ischemic diffusion lesion reversal after endovascular treatment. Stroke. 2019;50(6):1504–9.

    Article  PubMed  Google Scholar 

  69. Hsia AW, Luby M, Cullison K, Burton S, Armonda R, Liu AH, et al. Rapid apparent diffusion coefficient evolution after early revascularization. Stroke. 2019;50(8):2086–92.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kohno K, Hoehn-Berlage M, Mies G, Back T, Hossmann KA. Relationship between diffusion-weighted MR images, cerebral blood flow, and energy state in experimental brain infarction. Magn Reson Imaging. 1995;13(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  71. Hossmann KA, Fischer M, Bockhorst K, Hoehn-Berlage M. NMR imaging of the apparent diffusion coefficient (ADC) for the evaluation of metabolic suppression and recovery after prolonged cerebral ischemia. J Cereb Blood Flow Metab. 1994;14(5):723–31.

    Article  CAS  PubMed  Google Scholar 

  72. Norris D, Niendorf T, Leibfritz D. Health and infarcted brain tissues studied at short diffusion times: the origins of apparent restriction and the reduction in apparent diffusion coefficient. NMR Biomed. 1994;7(7):304–10.

    Article  CAS  PubMed  Google Scholar 

  73. Desmond PM, Lovell AC, Rawlinson AA, Parsons MW, Barber PA, Yang Q, et al. The value of apparent diffusion coefficient maps in early cerebral ischemia. AJNR Am J Neuroradiol. 2001;22(7):1260–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010;23(7):698–710.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Weber RA, Hui ES, Jensen JH, Nie X, Falangola MF, Helpern JA, et al. Diffusional kurtosis and diffusion tensor imaging reveal different time-sensitive stroke-induced microstructural changes. Stroke. 2015;46(2):545–50.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li C, Lan C, Zhang X, Yin L, Hao X, Tian J, et al. Evaluation of diffusional kurtosis imaging in sub-acute ischemic stroke: comparison with rehabilitation treatment effect. Cell Transplant. 2019;28(8):1053–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang S, Zhu W, Zhang Y, Yao Y, Shi J, Wang CY, et al. Diffusional kurtosis imaging in evaluating the secondary change of corticospinal tract after unilateral cerebral infarction. Am J Transl Res. 2017;9(3):1426–34.

    PubMed  PubMed Central  Google Scholar 

  78. Hansen B, Jespersen SN. Recent developments in fast kurtosis imaging. Front Phys. 2017;5(40). https://doi.org/10.3389/fphy.2017.00040.

  79. Hui ES, Fieremans E, Jensen JH, Tabesh A, Feng W, Bonilha L, et al. Stroke assessment with diffusional kurtosis imaging. Stroke. 2012;43(11):2968–73.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cheung JS, Wang E, Lo EH, Sun PZ. Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia. Stroke. 2012;43(8):2252–4.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fiehler J, Knudsen K, Kucinski T, Kidwell CS, Alger JR, Thomalla G̈, et al. Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke. 2004;35(2):514–9.

    Article  PubMed  Google Scholar 

  82. Hansen B, Lund TE, Sangill R, Jespersen SN. Experimentally and computationally fast method for estimation of a mean kurtosis. Magn Reson Med. 2013;69(6):1754–60.

    Article  PubMed  Google Scholar 

  83. Wu Y, Kim J, Chan ST, Zhou IY, Guo Y, Igarashi T, et al. Comparison of image sensitivity between conventional tensor-based and fast diffusion kurtosis imaging protocols in a rodent model of acute ischemic stroke. NMR Biomed. 2016;29(5):625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhou IY, Guo Y, Igarashi T, Wang Y, Mandeville E, Chan ST, et al. Fast diffusion kurtosis imaging (DKI) with Inherent COrrelation-based Normalization (ICON) enhances automatic segmentation of heterogeneous diffusion MRI lesion in acute stroke. NMR Biomed. 2016;29(12):1670–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang E, Wu Y, Cheung JS, Zhou IY, Igarashi T, Zhang XA, et al. pH imaging reveals worsened tissue acidification in diffusion kurtosis lesion than the kurtosis/diffusion lesion mismatch in an animal model of acute stroke. J Cereb Blood Flow Metab. 2017;37(10):3325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Loh PS, Butcher KS, Parsons MW, MacGregor L, Desmond PM, Tress BM, et al. Apparent diffusion coefficient thresholds do not predict the response to acute stroke thrombolysis. Stroke. 2005;36(12):2626–31.

    Article  PubMed  Google Scholar 

  87. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia-the ischemic penumbra. Stroke. 1981;12(6):723–5.

    Article  CAS  PubMed  Google Scholar 

  88. Sako K, Kobatake K, Yamamoto YL, Diksic M. Correlation of local cerebral blood flow, glucose utilization, and tissue pH following a middle cerebral artery occlusion in the rat. Stroke. 1985;16(5):828–34.

    Article  CAS  PubMed  Google Scholar 

  89. Siesjo BK. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J Neurosurg. 1992;77(3):337–54.

    Article  CAS  PubMed  Google Scholar 

  90. Jeffs GJ, Meloni BP, Bakker AJ, Knuckey NW. The role of the Na(+)/Ca(2+) exchanger (NCX) in neurons following ischaemia. J Clin Neurosci. 2007;14(6):507–14.

    Article  CAS  PubMed  Google Scholar 

  91. Uria-Avellanal C, Robertson NJ. Na+/H+ exchangers and intracellular pH in perinatal brain injury. Transl Stroke Res. 2014;5(1):79–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tomlinson FH, Anderson RE, Meyer FB. Brain pHi, cerebral blood flow, and NADH fluorescence during severe incomplete global ischemia in rabbits. Stroke. 1993;24(3):435–43.

    Article  CAS  PubMed  Google Scholar 

  93. Regli L, Anderson RE, Meyer FB. Effects of intermittent reperfusion on brain pHi, rCBF, and NADH during rabbit focal cerebral ischemia. Stroke. 1995;26(8):1444–51 discussion 1451-2.

    Article  CAS  PubMed  Google Scholar 

  94. Mutch WA, Hansen AJ. Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J Cereb Blood Flow Metab. 1984;4(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  95. Csiba L, Paschen W, Hossmann KA. A topographic quantitative method for measuring brain tissue pH under physiological and pathophysiological conditions. Brain Res. 1983;289(1–2):334–7.

    Article  CAS  PubMed  Google Scholar 

  96. LaManna JC. Intracellular pH determination by absorption spectrophotometry of neutral red. Metab Brain Dis. 1987;2(3):167–82.

    Article  CAS  PubMed  Google Scholar 

  97. Peek KE, Lockwood AH, Izumiyama M, Yap EWH, Labove J. Glucose metabolism and acidosis in the metabolic penumbra of rat brain. Metab Brain Dis. 1989;4(4):261–72.

    Article  CAS  PubMed  Google Scholar 

  98. Khan T, Soller B, Naghavi M, Casscells W. Tissue pH determination for the detection of metabolically active, inflamed vulnerable plaques using near-infrared spectroscopy: an in-vitro feasibility study. Cardiology. 2005;103(1):10–6.

    Article  PubMed  CAS  Google Scholar 

  99. Adam WR, Koretsky AP, Weiner MW. 31P-NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Am J Phys. 1986;251(5 Pt 2):F904–10.

    CAS  Google Scholar 

  100. Hohn-Berlage M, et al. Imaging of brain tissue pH and metabolites. A new approach for the validation of volume-selective NMR spectroscopy. NMR Biomed. 1989;2(5–6):240–5.

    Article  CAS  PubMed  Google Scholar 

  101. Edden RA, et al. Optimized detection of lactate at high fields using inner volume saturation. Magn Reson Med. 2006;56(4):912–7.

    Article  CAS  PubMed  Google Scholar 

  102. Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  103. Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9(8):1085–90.

    Article  CAS  PubMed  Google Scholar 

  104. Sun PZ, Sorensen AG. Imaging pH using the chemical exchange saturation transfer (CEST) MRI: correction of concomitant RF irradiation effects to quantify CEST MRI for chemical exchange rate and pH. Magn Reson Med. 2008;60(2):390–7.

    Article  PubMed  Google Scholar 

  105. Sun PZ, Benner T, Copen WA, Sorensen AG. Early experience of translating pH-weighted MRI to image human subjects at 3 Tesla. Stroke. 2010;41(10 Suppl):S147–51.

    PubMed  PubMed Central  Google Scholar 

  106. Zong X, Wang P, Kim SG, Jin T. Sensitivity and source of amine-proton exchange and amide-proton transfer magnetic resonance imaging in cerebral ischemia. Magn Reson Med. 2014;71(1):118–32.

    Article  CAS  PubMed  Google Scholar 

  107. Li H, Zu Z, Zaiss M, Khan IS, Singer RJ, Gochberg DF, et al. Imaging of amide proton transfer and nuclear overhauser enhancement in ischemic stroke with corrections for competing effects. NMR Biomed. 2015;28(2):200–9.

    Article  PubMed  Google Scholar 

  108. Sun PZ, Xiao G, Zhou IY, Guo Y, Wu R. A method for accurate pH mapping with chemical exchange saturation transfer (CEST) MRI. Contrast Media Mol Imaging. 2016;11(3):195–202.

    Article  CAS  PubMed  Google Scholar 

  109. Jin T, Wang P, Hitchens TK, Kim SG. Enhancing sensitivity of pH-weighted MRI with combination of amide and guanidyl CEST. Neuroimage. 2017;157:341–50.

    Article  PubMed  Google Scholar 

  110. Wu Y, Zhou IY, Lu D, Manderville E, Lo EH, Zheng H, et al. pH-sensitive amide proton transfer effect dominates the magnetization transfer asymmetry contrast during acute ischemia-quantification of multipool contribution to in vivo CEST MRI. Magn Reson Med. 2018;79(3):1602–8.

    Article  CAS  PubMed  Google Scholar 

  111. Jokivarsi KT, Gröhn HI, Gröhn OH, Kauppinen RA. Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia. Magn Reson Med. 2007;57(4):647–53.

    Article  CAS  PubMed  Google Scholar 

  112. Sun PZ, Wang E, Cheung JS. Imaging acute ischemic tissue acidosis with pH-sensitive endogenous amide proton transfer (APT) MRI-correction of tissue relaxation and concomitant RF irradiation effects toward mapping quantitative cerebral tissue pH. Neuroimage. 2012;60(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  113. Jin T, Wang P, Zong X, Kim SG. MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T. Magn Reson Med. 2013;69(3):760–70.

    Article  CAS  PubMed  Google Scholar 

  114. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PCM. Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab. 2007;27(6):1129–36.

    Article  PubMed  Google Scholar 

  115. Zhou J, van Zijl PC. Defining an acidosis-based ischemic penumbra from pH-weighted MRI. Transl Stroke Res. 2011;3(1):76–83.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dani KA, Warach S. Metabolic imaging of ischemic stroke: the present and future. AJNR Am J Neuroradiol. 2014;35(6 Suppl):S37–43.

    Article  CAS  PubMed  Google Scholar 

  117. Sun PZ, Zhou J, Huang J, van Zijl P. Simplified quantitative description of amide proton transfer (APT) imaging during acute ischemia. Magn Reson Med. 2007;57(2):405–10.

    Article  PubMed  Google Scholar 

  118. Sun PZ, Cheung JS, Wang E, Lo EH. Association between pH-weighted endogenous amide proton chemical exchange saturation transfer MRI and tissue lactic acidosis during acute ischemic stroke. J Cereb Blood Flow Metab. 2011;31(8):1743–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhou IY, Lu D, Ji Y, Wu L, Wang E, Cheung JS, et al. Determination of multipool contributions to endogenous amide proton transfer effects in global ischemia with high spectral resolution in vivo chemical exchange saturation transfer MRI. Magn Reson Med. 2019;81(1):645–52.

    Article  CAS  PubMed  Google Scholar 

  120. Guo Y, Zhou IY, Chan ST, Wang Y, Mandeville ET, Igarashi T, et al. pH-sensitive MRI demarcates graded tissue acidification during acute stroke-pH specificity enhancement with magnetization transfer and relaxation-normalized amide proton transfer (APT) MRI. Neuroimage. 2016;141:242–9.

    Article  CAS  PubMed  Google Scholar 

  121. Wang E, Wu Y, Cheung JS, Igarashi T, Wu L, Zhang X, et al. Mapping tissue pH in an experimental model of acute stroke–determination of graded regional tissue pH changes with non-invasive quantitative amide proton transfer MRI. NeuroImage. 2019;191:610–7.

    Article  PubMed  Google Scholar 

  122. Back T, Hoehn-Berlage M, Kohno K, Hossmann KA. Diffusion nuclear magnetic resonance imaging in experimental stroke. Correlation with cerebral metabolites. Stroke. 1994;25(2):494–500.

    Article  CAS  PubMed  Google Scholar 

  123. Lu D, Jiang Y, Ji Y, Zhou IY, Mandeville E, Lo EH, et al. Evaluation of diffusion kurtosis imaging of stroke lesion with hemodynamic and metabolic MRI in a rodent model of acute stroke. AJR Am J Roentgenol. 2018;210(4):720–7.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sun PZ. Fast correction of B0 field inhomogeneity for pH-specific magnetization transfer and relaxation normalized amide proton transfer imaging of acute ischemic stroke without Z-spectrum. Magn Reson Med. 2020;83(5):1688–97.

    Article  CAS  PubMed  Google Scholar 

  125. Sun PZ. Demonstration of magnetization transfer and relaxation normalized pH-specific pulse-amide proton transfer imaging in an animal model of acute stroke. Magn Reson Med. 2020;84(3):1526–33.

    Article  CAS  PubMed  Google Scholar 

  126. Ewing JR, Jiang Q, Boska M, Zhang ZG, Brown SL, Li GH, et al. T1 and magnetization transfer at 7 Tesla in acute ischemic infarct in the rat. Magn Reson Med. 1999;41(4):696–705.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang XY, Wang F, Afzal A, Xu J, Gore JC, Gochberg DF, et al. A new NOE-mediated MT signal at around -1.6ppm for detecting ischemic stroke in rat brain. Magn Reson Imaging. 2016;34(8):1100–6.

    Article  PubMed  PubMed Central  Google Scholar 

  128. McGarry BL, et al. Magnetic resonance imaging protocol for stroke onset time estimation in permanent cerebral ischemia. J Vis Exp. 2017;2017(127):56103. https://doi.org/10.3791/55277.

  129. Wu L, Jiang L, Sun PZ. Investigating the origin of pH-sensitive magnetization transfer ratio asymmetry MRI contrast during the acute stroke: correction of T(1) change reveals the dominant amide proton transfer MRI signal. Magn Reson Med. 2020;84(5):2702–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tee YK, Harston GWJ, Blockley N, Okell TW, Levman J, Sheerin F, et al. Comparing different analysis methods for quantifying the MRI amide proton transfer (APT) effect in hyperacute stroke patients. NMR Biomed. 2014;27(9):1019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Harston GW, et al. Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging. Brain. 2015;138(Pt 1):36–42.

    Article  PubMed  Google Scholar 

  132. Msayib Y, Harston GWJ, Tee YK, Sheerin F, Blockley NP, Okell TW, et al. Quantitative CEST imaging of amide proton transfer in acute ischaemic stroke. Neuroimage Clin. 2019;23:101833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Heo HY, Zhang Y, Burton TM, Jiang S, Zhao Y, van Zijl PCM, et al. Improving the detection sensitivity of pH-weighted amide proton transfer MRI in acute stroke patients using extrapolated semisolid magnetization transfer reference signals. Magn Reson Med. 2017;78(3):871–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yin J, Sun H, Wang Z, Ni H, Shen W, Sun PZ. Diffusion kurtosis imaging of acute infarction: comparison with routine diffusion and follow-up MR imaging. Radiology. 2018;287(2):651–7.

    Article  PubMed  Google Scholar 

  135. Zhu L-H, Zhang ZP, Wang FN, Cheng QH, Guo G. Diffusion kurtosis imaging of microstructural changes in brain tissue affected by acute ischemic stroke in different locations. Neural Regen Res. 2019;14(2):272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Guo YL, Li SJ, Zhang ZP, Shen ZW, Zhang GS, Yan G, et al. Parameters of diffusional kurtosis imaging for the diagnosis of acute cerebral infarction in different brain regions. Exp Ther Med. 2016;12(2):933–8.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Anderson RE, Meyer FB. Protection of focal cerebral ischemia by alkalinization of systemic pH. Neurosurgery. 2002;51(5):1256–65 discussion 1265-6.

    Article  PubMed  Google Scholar 

  138. Chang HB, Gao X, Nepomuceno R, Hu S, Sun D. Na(+)/H(+) exchanger in the regulation of platelet activation and paradoxical effects of cariporide. Exp Neurol. 2015;272:11–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Song S, Wang S, Pigott VM, Jiang T, Foley LM, Mishra A, et al. Selective role of Na(+)/H(+) exchanger in Cx3cr1(+) microglial activation, white matter demyelination, and post-stroke function recovery. Glia. 2018;66(11):2279–98.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118(6):687–98.

    Article  CAS  PubMed  Google Scholar 

  141. Pignataro G, Simon RP, Xiong ZG. Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain. 2007;130(Pt 1):151–8.

    PubMed  Google Scholar 

  142. McCabe C, Arroja MM, Reid E, Macrae IM. Animal models of ischaemic stroke and characterisation of the ischaemic penumbra. Neuropharmacology. 2018;134:169–77.

    Article  CAS  PubMed  Google Scholar 

  143. Dhanesha N, Vázquez-Rosa E, Cintrón-Pérez CJ, Thedens D, Kort AJ, Chuong V, et al. Treatment with uric acid reduces infarct and improves neurologic function in female mice after transient cerebral ischemia. J Stroke Cerebrovasc Dis. 2018;27(5):1412–6.

    Article  PubMed  Google Scholar 

  144. Shin HK, Huang PL, Ayata C. Rho-kinase inhibition improves ischemic perfusion deficit in hyperlipidemic mice. J Cereb Blood Flow Metab. 2014;34(2):284–7.

    Article  CAS  PubMed  Google Scholar 

  145. Savitz SI, Baron JC, Fisher M, for the STAIR X Consortium, Albers GW, Arbe-Barnes S, et al. Stroke treatment academic industry roundtable X. Stroke. 2019;50(4):1026–31.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported in part by grants from NIH/NINDS 2R01NS083654 (to Sun) and Emory University Synergy Grant (to Hu and Sun).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Zhe Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, J., Doerr, M., Hu, R. et al. Refined Ischemic Penumbra Imaging with Tissue pH and Diffusion Kurtosis Magnetic Resonance Imaging. Transl. Stroke Res. 12, 742–753 (2021). https://doi.org/10.1007/s12975-020-00868-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00868-z

Keywords

Navigation