Skip to main content
Log in

On the molecular etiology of decreased arachidonic (20:4n-6), docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids in Zellweger syndrome and other peroxisomal disorders

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Alterations in the metabolism of arachidonic (20:4n-6), docosapentaenoic (22:5n-6), and docosahexaenoic (22:6n-3) acids and other polyunsaturated fatty acids in Zellweger syndrome and other peroxisomal disorders are reviewed. Previous proposals that peroxisomes are necessary for the synthesis of 22:6n-3 and 22:5n-6 are critically examined. The data suggest that 22:6n-3 is biosynthesized in mitochondria via a channelled carnitine-dependent pathway involving an n-3-specific D-4 desaturase, while 20:4n-6, 20:5n-3 and 22:5n-6 are synthesized by both mitochondrial and microsomal systems; these pathways are postulated to be interregulated as compensatory-redundant systems. Present evidence suggests that 22:6n-3-containing phospholipids may be required for the biochemical events involved in successful neuronal migration and developmental morphogenesis, and as structural cofactors for the functional assembly and integration of a variety of membrane enzymes, receptors, and other proteins in peroxisomes and other subcellular organelles. A defect in the mitochondrial desaturation pathway is proposed to be a primary etiologic factor in the clinicopathology of Zellweger syndrome and other related disorders. Several implications of this proposal are examined relating to effects of pharmacological agents which appear to inhibit steps in this pathway, such as some hypolipidemics (fibrates), neuroleptics (phenothiazines and phenytoin) and prenatal alcohol exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowen P, Lee CSN, Zellweger H, Lindenberg R: A familial syndrome of multiple congenital defects. Bull Johns Hopk Hosp 114: 402–414, 1965

    Google Scholar 

  2. Goldfischer S, Moore CL, Johnson A, Spiro A, Valsamis MP, Wisniewski HK, Rilch RH, Norton WT, Rapin I, Gartner LM: Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182: 62–64, 1973

    Google Scholar 

  3. Muller-Hocker J, Walther JU, Bise K, Dongratz D, Hubner G: Mitochondrial myopathy with loosely coupled oxidative phosphorylation in a case of Zellweger syndrome. Virchows Arch [Cell Pathol] 54: 125–138, 1984

    Google Scholar 

  4. Goldfischer SL: Pathogenesis of Zellweger's cerebro-hepato-renal syndrome and related peroxisomal deficiency diseases. In: HD Fahimi and H Sies (eds). Peroxisomes in Biology and Medicine. Springer-Verlag, Berlin, 1987, pp 323–334

    Google Scholar 

  5. Evrard P, Caviness VS, Prats-Vinas J, Lyon G: The mechanism of neuronal migration in the Zellweger malformation: an hypothesis based on cytoarchitectonic analysis. Acta Neuropath 41: 109–117, 1978

    Google Scholar 

  6. Martin JJ: Neuropathology of peroxisomal diseases. J Inher Metab Dis 18 (Suppl. 1): 19–33, 1995

    Google Scholar 

  7. Moser AK, Singh I, Brown FR III, Solish GI, Kelley RI, Benke PJ, Moser HW: The cerebro-hepato-renal (Zellweger) syndrome: increased levels and impaired degradation of very long chain fatty acids and their use in prenatal diagnosis. N Engl J Med 310: 1141–1146, 1984

    Google Scholar 

  8. Heymans HSA, Schutgens RBH, Tan R, Van den Bosch H, Borst P: Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature 306: 69–70, 1983

    Google Scholar 

  9. Wilson GN, Holmes RG, Custer J, Lipowitz JL, Stover J, Datta N, Hajra A: Zellweger syndrome diagnostic assays, syndrome delineation and potential therapy. Am J Med Genet 24: 69–82, 1986

    Google Scholar 

  10. Jones CL, Hajra AK: The subcellular distribution of acyl CoA: dihydroxyacetone phosphate acyl transferase in guinea pig liver. Biochem Biophys Res Commun 76: 1138–1143, 1977

    Google Scholar 

  11. Hajra AH: Glycerolipid biosynthesis in peroxisomes (microbodies). Progr Lipid Res 34: 343–364, 1995

    Google Scholar 

  12. Martinez M: Severe deficiency of docosahexaenoic acid in peroxisomal disorders: a defect of Δ-4 desaturation? Neurology 40: 1292–1298, 1990

    Google Scholar 

  13. Martinez M: Polyunsaturated fatty acid changes suggesting a new enzymatic defect in Zellweger syndrome. Lipids 24: 261–265, 1989

    Google Scholar 

  14. Martinez M: Abnormal profiles of polyunsaturated fatty acids in the brain, liver, kidney and retina of patients with peroxisomal disorders. Brain Res 583: 171–182, 1992

    Google Scholar 

  15. Martinez M, Mougan I, Roig M, Ballabriga A: Blood polyunsaturated fatty acids in patients with peroxisomal disorders. A multicenter study. Lipids 29: 273–280, 1994

    Google Scholar 

  16. Aeberhard E, Menkes JH: Biosynthesis of long chain fatty acids by subcellular particles of mature brain. J Biol Chem 243: 3834–3840, 1968

    Google Scholar 

  17. Gronn M, Christensen E, Hagve T, Christophersen BO: The Zellweger syndrome: deficient conversion of docosahexaenoic acid (22:6n-3) to eicosapentaenoic acid (20:5n-3) and normal Δ-4 desaturase activity in cultured skin fibroblasts. Biochim Biophys Acta 1044: 249–254, 1990

    Google Scholar 

  18. Mimouni V, Narce M, Huang YS, Horrobin DF, Poisson JP: Adrenic acid Δ-4 desaturation and fatty acid composition in liver microsomes of spontaneously diabetic Wistar BB rats. Prost Leukotr Ess Fatty Acid 50: 43–47, 1994

    Google Scholar 

  19. Goldfischer S, Collins J, Rapin I, Newman P, Neglia W, Spiro AJ, Ishii T, Roels F, Vamecq J, Van Hoof F: Pseudo-Zellweger syndrome: deficiencies in several peroxisomal oxidative activities. J Pediatr 108: 25–32, 1986.

    Google Scholar 

  20. Vamecq J, Draye JP, van Hoff F, Misson JP, Evrard P, Verellen G, Eyssen HJ, Van Eldere J, Schutgens RBH, Wanders RJA, Roels F, Goldfischer SL: Multiple peroxisomal enzymatic deficiency disorders. A comparative biochemical and morphological study of Zellweger cerebro-hepato-renal syndrome and neonatal adrenoleukodystrophy. Am J Pathol 125: 524–553, 1986

    Google Scholar 

  21. Voss A, Reinhart M, Sankarappa S, Sprecher H: The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem 266: 19995–20000, 1991

    Google Scholar 

  22. Sprecher H, Luthria DL, Mohammed BS, Baykousheva SP: Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res 36: 2471–2477, 1995

    Google Scholar 

  23. Hagve TA, Christophersen BO: Evidence for peroxisomal retroconversion of adrenic acid (22:4(n-6)) and docosahexaenoic acids (22:6(n-3)) in isolated liver cells. Biochim Biophys Acta 875: 165–173, 1986

    Google Scholar 

  24. Gronn M, Christensen E, Hagve TA, Christophersen BO: The Zellweger syndrome: deficient conversion of docosahexaenoic acid (22:6(n-3)) to eicosapentaenoic acid (20:5(n-3)) and normal Δ4-desaturase activity in cultured skin fibroblasts. Biochim Biophys Acta 1044: 249–254, 1990

    Google Scholar 

  25. Gronn M, Christensen E, Hagve TA, Christophersen BO: Peroxisomal retroconversion of docosahexaenoic acid (22:6(n-3)) to eicosapentaenoic acid (20:5(n-3)) studied in isolated rat liver cells. Biochim Biophys Acta 1081: 85–91, 1991

    Google Scholar 

  26. Osmundsen H, Bremer J, Pedersen JI: Metabolic aspects of peroxisomal β-oxidation. Biochim Biophys Acta 1085: 141–158, 1991

    Google Scholar 

  27. Moore SA, Hurt E, Yoder E, Sprecher H, Spector AA: Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J Lipid Res 36: 2433–2443, 1995

    Google Scholar 

  28. Poulos A, Sharp P, Singh H, Johnson D, Fellenberg A, Pollard A: Detection of a homologous series of C26 –C38 polyenoic fatty acids in the brains of patients without peroxisomes (Zellweger's syndrome). Biochem J 235: 607–610, 1986

    Google Scholar 

  29. Sharp P, Poulos A, Fellenberg A, Johnson D: Structure and lipid distribution of polyenoic very-long-chain fatty acids in the brain of peroxisome-deficient patients with (Zellweger syndrome). Biochem J 248: 61–67, 1987

    Google Scholar 

  30. Rosenthal MD, Garcia MC, Jones MR, Sprecher H: Retroconversion and Δ-4 desaturation of docosatetraenoate (22:4(n-6)) and docosapentaenoate (22:5(n-3)) by human cells in culture. Biochim Biophys Acta 1083: 29–36, 1991

    Google Scholar 

  31. Marzo I, Alava MA, Pineiro A, Naval J: Biosynthesis of docosahexaenoic acid in human cells: evidence that two different Δ6desaturase activities may exist. Biochim Biophys Acta 1301: 263–272, 1996

    Google Scholar 

  32. Wang N, Anderson RE: Synthesis of docosahexaenoic acid by retina and retinal pigment epithelium. Biochemistry 32: 13703–13709, 1993

    Google Scholar 

  33. Buzzi M, Henderson RJ, Sargent JR: The desaturation and elongation of linolenic acid and eicosapentaenoic acid by hepatocytes and liver microsomes from rainbow trout (Oncorhychus mykiss) fed diets containing fish oil or olive oil. Biochim Biophys Acta 1299: 235–244, 1996

    Google Scholar 

  34. Geiger M, Mohammed BS, Sankarappa S, Sprecher H: Studies to determine if rat liver contains chain-length-specific acyl-CoA 6-desaturases. Biochim Biophys Acta 1170: 137–142, 1993

    Google Scholar 

  35. Mathis RK, Watkins JB, Szczepanik-Van Leeuween P, Lott I: Liver in the cerebro-hepato-renal syndrome: defective bile acid synthesis and abnormal mitochondria. Gastroenterology 79: 1311–1317, 1980

    Google Scholar 

  36. Sarnat HB, Machin G, Darwish HZ, Rubin SZ: Mitochondrial myopathy of cerebro-hepato-renal (Zellweger) syndrome. Can J Neurol Sci 10: 170–177, 1983

    Google Scholar 

  37. Trijbels JMF, Berden JA, Monnens LAH, Willems JL, Janssen JM, Schutgens RBH, Van Den Broek-Van Essen M: Biochemical studies in the liver and muscle of patients with Zellweger syndrome. Pediatr Res 17: 514–517, 1983

    Google Scholar 

  38. Hughes JL, Poulos A, Robertson E, Chow CW, Sheffield LJ, Christodoulou J, Carter RF: Pathology of hepatic peroxisomes and mitochondria in patients with peroxisomal disorders. Virchows Archiv A Pathol Anat 416: 255–264, 1990

    Google Scholar 

  39. Poulos A, Christodoulou J, Chow CW, Goldblatt J, Paton B, Suzuki Y, Shimazowa N: Peroxisomal assembly defects: clinical, pathologic, and biochemical findings in two patients in a newly identified complementation group. J Pediatr 127: 596–599, 1995

    Google Scholar 

  40. Harlan WR Jr, Wakil SJ: Synthesis of fatty acids in animal tissues. I. Incorporation of C14-acetyl coenzyme A into a variety of long chain fatty acids by subcellular particles. J Biol Chem 238: 3216–3223, 1963

    Google Scholar 

  41. Harlan WR Jr, Wakil SJ: The pathways of synthesis of fatty acids by mitochondria. Biochem Biophys Res Commun 8: 131–135, 1962

    Google Scholar 

  42. Dahlen JV, Porter JW: Studies on the synthesis of fatty acids by a beef heart mitochondrial system. Arch Biochem Biophys 127: 207–223, 1968

    Google Scholar 

  43. Jakobsson A, Ericsson J, Dallner G: Metabolism of fatty acids and their incorporation into phospholipids of the mitochondria and endoplasmic reticulum in isolated hepatocytes determined by isolation of fluorescence derivatives. Biochim Biophys Acta 1046: 277–287, 1990

    Google Scholar 

  44. Goldfischer S, Collins J, Rapin I, Coltoff-Schiller B, Chang C, Nigro M, Black VH, Javitt NB, Moser HW, Lazarow PB: Peroxisomal defects in neonatal-onset and X-linked adrenoleukodystrophies. Science 227: 67–70, 1985

    Google Scholar 

  45. Abarbanel JM, Osimani A, Shorer Z, Lichtenfeld Y, Frisher S, Herishanu Y: Adrenomyeloneuropathic syndrome in a woman, asso ciated with morphologic abnormalities of muscle mitochondria. Neurology 37: 1563, 1987

    Google Scholar 

  46. Infante JP: Vitamin E and selenium participation in fatty acid desaturation. A proposal for an enzymatic function of these nutrients. Mol Cell Biochem 69: 93–108, 1986

    Google Scholar 

  47. Stoffel W, Schiefer H: Biosynthesis and composition of phosphatides in outer and inner mitochondrial membranes. Hoppe-Seyler's Z. Physiol Chem 349: 1017–1026, 1968

    Google Scholar 

  48. Brunner G, Bygrave FL: Microsomal marker enzymes and their limitations in distinguishing the outer membrane of rat liver mitochondria from the microsomes. Eur J Biochem 8: 530–534, 1969

    Google Scholar 

  49. Giusto NM, Boschero MI, Sprecher H, Aveldano MI: Active labeling of phosphatidylcholines by [1–14C]docosahexaenoate in isolated photoreceptor membranes. Biochim Biophys Acta 860: 137–148, 1986

    Google Scholar 

  50. Rotstein NP, Aveldano MI: Labeling of phosphatidylcholines of retinal subcellular fractions by [1–14C]eicosatetraenoate (20:4n-6), docosapentaenoate (22:5n-3) and docosahexaenoate (22:6n-3). Biochim Biophys Acta 921: 235–244, 1987

    Google Scholar 

  51. Mercurio AM, Holtzman E: Ultrastructural localization of glycerolipid synthesis in rod cells of the isolated frog retina. J Neurocytol 11: 295–322, 1982

    Google Scholar 

  52. Bazan NG, Rodriguez EB, Gordon W: Pathways for the uptake and conservation of docosahexaenoic acid in photoreceptors and synapses: biochemical and autoradiographic studies. Can J Physiol Pharmacol 71: 690–698, 1993

    Google Scholar 

  53. Infante JP: Biosynthesis of acyl-specific glycerophospholipids in mammalian tissues. Postulation of new pathways. FEBS Lett 170: 1–14, 1984

    Google Scholar 

  54. Infante JP, Huszagh VA: Is there a new biosynthetic pathway for lung surfactant phosphatidylcholine? TIBS 12: 131–133, 1987

    Google Scholar 

  55. Infante JP: De novo CDP-choline-dependent glycerophosphorylcholine synthesis and its involvement as an intermediate in phospholipid synthesis. FEBS Lett 214: 149–152, 1987

    Google Scholar 

  56. Baranska J: A new pathway for phosphatidylserine synthesis in rat liver microsomes. FEBS Lett 228: 175–178, 1988

    Google Scholar 

  57. Zablocki K, Miller SPF, Garcia-Perez A, Burg MB: Accumulation of glycerophosphocholine (GPC) by renal cell: osmotic regulation of GPC:cholinephosphodiesterase. Proc Natl Acad Sci USA 88: 7820–7824, 1991

    Google Scholar 

  58. Brunnetti M, Terracina L, Gaiti A: Possible involvement of L-glycerophosphorylethanolamine in the phospholipid methylation pathway. Neurochem Res 20: 442–449, 1995

    Google Scholar 

  59. Alberghina M, Giacchetto A, Cavallaro N: Levels of ethanolamine intermediates in the human and rat visual system structures: comparison with neural tissues of a lower vertebrate (Mustelus canis) and an invertebrate (Loligo pealei). Neurochem Int 22: 45–51, 1993

    Google Scholar 

  60. Alberghina M, Gould RM: Levels of choline intermediates in the visual system structures and in peripheral nerve of the rat: comparison with neural tissues of a lower vertebrate (Mustelus canis) and an invertebrate (Loligo pealei;). Neurochem Int 17: 599–604, 1990

    Google Scholar 

  61. Infante JP: De novo sn-glycerol-3-phosphorylcholine synthetase activity in lung and muscle and it subcellular location. Mol Cell Biochem 71: 135–137, 1986

    Google Scholar 

  62. Toth IE, Infante JP, Bruckner GG: Glycerophosphorylcholine is synthesized de novo by kidney mitochondria. FASEB J 9: A470, 1995

    Google Scholar 

  63. Infante JP: Docosahexaenoate-containing phospholipids in sarcoplasmic reticulum and retinal photoreceptors. A proposal for a role in Ca2+-ATPase calcium transport. Mol Cell Biochem 74: 111–116, 1987

    Google Scholar 

  64. Higgins AS, Seibel H, Friend W, Rogers KS: Heterogeneity of renal mitochondria of the rat. Proc Soc Exp Biol Med 158: 595–598, 1978

    Google Scholar 

  65. Mandon EC, Gomez Dumm INT, Brenner RR: Effect of high carbohydrate and high protein diets on microsomal fatty acid composition, ‘fluidity’ and Δ-6 desaturation activity in kidney and lung. Acta Physiol Pharmacol Latinoam 38: 49–58, 1988

    Google Scholar 

  66. Irazu C, Gonzalez-Rodriguez S, Brenner RR: Δ-5 desaturase activity in rat kidney microsomes. Mol Cell Biochem 129: 31–37, 1993

    Google Scholar 

  67. Suneja SK, Nagi MN, Cook L, Osei P, Ciuti DL: Do rat kidney cortex microsomes possess the enzymatic machinery to desaturate and chain elongate fatty acyl-CoA derivatives? Lipids 26: 359–363, 1991

    Google Scholar 

  68. Chern JC, Kinsella JE: The effects of unsaturated fatty acids on the synthesis of arachidonic acid in rat kidney cells. Biochim Biophys Acta 750: 465–471, 1983

    Google Scholar 

  69. Rosenthal MD, Whitehurst C: Selective effects of isomeric cis and trans fatty acids on fatty acyl Δ9 and Δ6 desaturation by human skin fibroblasts. Biochim Biophys Acta 753: 450–459, 1983

    Google Scholar 

  70. Mohrahuer H, Holman RT: Tracer experiments to assess metabolic conversions of polyunsaturated fatty acids. J Am Oil Chem Soc 42: 639–643, 1965

    Google Scholar 

  71. Miyamoto K, Stephanides LM, Bersohn J: Incorporation of [1–14C]linoleate and linolenate into polyunsaturated fatty acids of phospholipids of the embryonic chick brain. J Neurochem 14: 227–237, 1967

    Google Scholar 

  72. Schlenk HS, Sand DM, Gellerman JL: Retroconversion of docosahexaenoic acid in the rat. Biochim Biophys Acta 187: 201–207, 1969

    Google Scholar 

  73. Miyamoto K, Stephanides LM, Bernsohn J: Acetate–1–14C incorporation into polyunsaturated fatty acids of phospholipids of developing chick brain. J Lipid Res 8: 191–195, 1987

    Google Scholar 

  74. Christophersen BO, Hagve TA, Norseth J: Studies on the regulation of arachidonic acid synthesis in isolated rat liver cells. Biochim Biophys Acta 712: 305–314, 1982

    Google Scholar 

  75. Hagve TA, Christophersen BO: Linolenic acid desaturation and chain elongation and rapid turnover of phospholipid n-3 fatty acids in isolated rat liver cells. Biochim Biophys Acta 753: 339–349, 1983

    Google Scholar 

  76. Bremer J: Carnitine – metabolism and function. Physiol Rev 63: 1420–1480, 1983

    Google Scholar 

  77. Christophersen BO, Norseth J: Arachidonic acid synthesis studied in isolated liver cells. Effects of (–)-carnitine and of (+)-decanoylcarnitine. FEBS Lett 133: 201–204, 1981

    Google Scholar 

  78. Lazarow PB: Rat liver peroxisomes catalyze the b-oxidation of fatty acids. J Biol Chem 253: 1522–1528, 1978

    Google Scholar 

  79. Osmundsen H, Bremer J, Pedersen JI: Metabolic aspects of peroxisomal ß-oxidation. Biochim Biophys Acta 1095: 141–158, 1991

    Google Scholar 

  80. Christiansen RZ, Bremer J: Active transport of butyrobetaine and carnitine into isolated liver cells. Biochim Biophys Acta 448: 562–577, 1976

    Google Scholar 

  81. Harbhajan SP, Sekas G, Adibi SA: Carnitine biosynthesis in hepatic peroxisomes. Demonstration of γ-butyrobetaine hydroxylase activity. Eur J Biochem 205: 599–605, 1992

    Google Scholar 

  82. Hayashi H, Takahata S: Role of peroxisomal fatty acyl-CoA β-oxidation in phospholipid synthesis. Arch Biochem Biophys 284: 326–331, 1991

    Google Scholar 

  83. Kuwajima M, Kono N, Horuchi M, Imamura Y, Ono A, Inui Y, Kawata S, Koizumi T, Hayakawa JI, Taleyori S, Tarui S: Animal model of systemic carnitine deficiency: analysis in C3H-H-2° strain of mouse associated with juvenile visceral steatosis. Biochem Biophys Res Commun 174: 1090–1094, 1991

    Google Scholar 

  84. Hsu CC, Chuang YH, Tsai JL, Jong HJ, Shen YY, Huang HL, Chen HL, Lee HC, Pang CY, Wei YH, Chen SS: CPEO and carnitine deficiency overlapping in MELAS syndrome. Acta Neurol Scand 92: 252–255, 1995

    Google Scholar 

  85. North KN, Hoppel KL, De Girolami U, Kozakewich HPW, Korson MS: Lethal neonatal deficiency of carnitine palmitoyltransferase II associated with dysgenesis of the brain and kidneys. J Pediatr 127: 414–420, 1995

    Google Scholar 

  86. Zinn AB, Zurcher VL, Kraus F, Strohl C, Walsh-Sukys MC, Hoppel CL: Carnitine palmitoytransferase B deficiency: a heritable cause of neonatal cardiomyopathy and dysgenesis of the kidney. Pediatr Res 29: 73A, 1991

    Google Scholar 

  87. Witt DR, Theobald M, Santa-Maria M, Packman S, Townsend S, Sweetman L, Goodman S, Rhead W, Hoppel C: Carnitine palmitoyl transferase – type 2 deficiency: two new cases and successful prenatal diagnosis. Am J Hum Genet 49 (suppl.4): 109 only, 1991

    Google Scholar 

  88. Hug G, Bove KE, Soukup S: Lethal neonatal multiorgan deficiency of carnitine palmitoyltransferase II. N Engl J Med 325: 1862–1864, 1991

    Google Scholar 

  89. Pons R, De Vivo DC: Primary and secondary carnitine deficiency syndromes. J Child Neurol 10 (Suppl): 2S8–2S24, 1995

    Google Scholar 

  90. Kaufmann WE, Theda C, Naidu S, Watkins PA, Moser AB, Moser HW: Neuronal migration abnormality in peroxisomal bifunctional enzyme defect. Ann Neurol 39: 268–271, 1996

    Google Scholar 

  91. Rocchiccioli F, Wanders RJA, Aubourg P, Vianey-Liaud C, Ijlst L, Fabre M, Cartier N, Bougneres P-F: Deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase: a case of lethal myopathy and cardiomyopathy in early childhood. Pediatr Res 28: 657–662, 1990

    Google Scholar 

  92. Browse J, Somerville CR: Glycerolipid synthesis: biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42: 467–506, 1991

    Google Scholar 

  93. Slabas AR, Fawcett T: The biochemistry and molecular biology of plant lipid biosynthesis. Plant Mol Biol 19: 169–191, 1992

    Google Scholar 

  94. Rebuche CJ, Paulson DJ: Carnitine metabolism and function in humans. Ann Rev Nutr 6: 41–66, 1986

    Google Scholar 

  95. Lock EA, Mitchell AM, Elcombe CR: Biochemical mechanisms of induction of hepatic peroxisome proliferation. Ann Rev Pharmacol Toxicol 29: 145–163, 1989

    Google Scholar 

  96. Siliprandi N, Sartorelli L, Ciman M, Di Lisa F: Carnitine: metabolism and clinical chemistry. Clin Chim Acta 183: 3–12, 1989

    Google Scholar 

  97. Kawashima Y, Musoh K, Kozuka H: Alterations by clofibric acid of glycerolipid metabolism in rat kidney. Biochim Biophys Acta 1169: 202–209, 1993

    Google Scholar 

  98. Sire O, Mangeney M, Montagne J, Bereziat G, Nordmann J: Changes of fatty acid composition of phospholipids and lipid structural order in rat liver mitochondria membrane subsequent to galactosamine intoxication. Effect of clofibrate. Biochim Biophys Acta 860: 75–83, 1986

    Google Scholar 

  99. Nakagawa Y, Waku K, Hirose A, Kawashima Y, Kozuka H: Effect of clofibric acid on the molecular species composition of diacyl glycerophosphocholine of rat liver microsomes. Lipids 21: 634–638, 1986

    Google Scholar 

  100. Vazquez M, Munoz S, Alegret M, Adzet T, Merlos M, Laguna JC: Differential effects of fibrates on the acyl composition of microsomal phospholipids in rats. Br J Pharmacol 116: 2067–2075, 1995

    Google Scholar 

  101. Kawashima Y, Musoh K, Kozuka H: Peroxisome proliferators en hance linoleic acid metabolism in rat liver. Increased biosynthesis of ω-6 polyunsaturated fatty acids. J Biol Chem 265: 9170–9175, 1990

    Google Scholar 

  102. Kawashima Y, Uy-Yu N, Kozuka H: Sex-related differences in the enhancing effects of perfluoroctanoic acid on steroyl-CoA desaturase and its influence on the acyl composition of phospholipid in rat liver. Comparison with clofibric acid and tiadenol. Biochem J 263: 897–904, 1989

    Google Scholar 

  103. Langer T, Levy R: Acute muscular syndrome associated with administration of clofibrate. N Engl J Med 279: 856–858, 1968

    Google Scholar 

  104. Abourizk N, Khalil BA, Bahuth N, Afifi AK: Clofibrate-induced muscular syndrome. J Neurol Sci 42: 1–9, 1979

    Google Scholar 

  105. Bardosi A, Scheidt P, Goebel HH: Mitochondrial myopathy – a re sult of clofibrate/etofibrate treatment? A case report. Acta Neuropathol (Berl) 68: 164–168, 1985

    Google Scholar 

  106. Fisher S, K issling W, Kub HJ: Schizophrenic patients treated with high dose phenothiazine or thioxanthene become deficient in polyunsaturated fatty acids in their thrombocytes. Biochem Pharmacol 44: 317–323, 1992

    Google Scholar 

  107. Leighton F, Persico R, Necochea C: Peroxisomal fatty acid oxidation is selectively inhibited by phenothiazines in isolated hepatocytes. Biochem Biophys Res Commun 120: 505–511, 1984

    Google Scholar 

  108. Van den Branden C, Roels F: Thioridazine: a selective inhibitor of peroxisomal b-oxidation in vivo. FEBS Lett 187: 331–333, 1985

    Google Scholar 

  109. Roels F, Fisher S, Kissling W: Polyunsaturated fatty acids in peroxisomal disorders: a hypothesis and a proposal for treatment. J Neurol Neurosurg Psychiatr 56: 937 only, 1993

    Google Scholar 

  110. Vamecq J: Chlorpromazine and carnitine-dependency of rat liver peroxisomal β-oxidation of long chain fatty acids. Biochem J 241: 783–791, 1987

    Google Scholar 

  111. Vamecq J, Roels F, Van den Brande C, Draye P: Peroxisomal proliferation in heart and liver of mice receiving chlorpromazine, ethyl 2(5(4-chlorophenyl)pentyl) oxiran-2-carboxylic acid or high fat diet: a biochemical and morphological comparative study. Pediatr Res 22: 748–754, 1987

    Google Scholar 

  112. Zierz S, Neumann-Schmidt S: Inhibition of carnitine palmitoyltransferase (CPT) by chlorpromazine in muscle of patients with CPT deficiency. J Neurol 236: 251–252, 1989

    Google Scholar 

  113. Skorin C, Necochea C, Johow V, Soto U, Grau A, Bremer J, Leighton F: Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes. Biochem J 281: 561–567, 1992

    Google Scholar 

  114. Dudani AK, Gupta RS: Effect of chlorpromazine and trifluoroperazine on cytoskeletal components and mitochondria in cultured mammalian cells. Tissue Cell 19: 183–196, 1987

    Google Scholar 

  115. Yorek M, Leeney E, Dunlap J, Gisberg B: Effect of fatty acid composition on insulin and IGF-I binding in retinoblastoma cells. Invest Ophthalmol Vis Sci 30: 2087–2092, 1989

    Google Scholar 

  116. Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV: The relation between insulin sensitivity and the fattyacid composition of skeletal-muscle phospholipids. N Engl J Med 328: 238–244, 1993

    Google Scholar 

  117. Liu S, Baracos VE, Quinney HA, Clandinin MT: Dietary ω-3 and polyunsaturated fatty acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma. Biochem J 299: 831–837, 1994

    Google Scholar 

  118. Black SC, Katz S, McNeill JH: Influence of ω-3 fatty acid treatment on cardiac phospholipid composition and coronary flow of streptozocin-diabetic rats. Metabolism 42: 320–326, 1993

    Google Scholar 

  119. Infante JP, Huszagh VA: Synthesis of highly unsaturated phosphatidylcholines in the development of sperm motility: a role for epididymal glycerol-3-phosphorylcholine. Mol Cell Biochem 69: 3–6, 1985

    Google Scholar 

  120. Aveldano ML: Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of photoreceptor membranes. Biochem 27: 1229–1239, 1988

    Google Scholar 

  121. Deese AJ, Dratz EA, Dahlquist FW: Interaction of rhodopsin with two unsaturated phosphatidylcholines; a deuterium nuclear magnetic resonance study. Biochem 20: 6420–6427, 1981

    Google Scholar 

  122. Papermaster DS, Schneider BG, Besharse JC: Vesicular transport of newly-synthesized opsin from the Golgi apparatus toward the rod outer segment: ultrastructural immunocytochemical and autoradiographic evidence in Xenopus retinas. Invest Opthalmol Vis Sci 26: 1386–1404, 1985

    Google Scholar 

  123. Bourre JM, Pascal G, Durand G, Masson M, Sumout O, Piciotti M: Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes, and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. J Neurochem 43: 342–348, 1984

    Google Scholar 

  124. Kirischuk S, Neuhaus J, Verkhratsky A, Kettenmann H: Preferential localization of active mitochondria in process tips of immature retinal oligodendrocytes. NeuroReport 6: 737–741, 1995

    Google Scholar 

  125. Mayordomo F, Renau-Piqueras J, Megias L, Guerri C, Iborra FJ, Azorin I, Ledig M: Cytological and stereological analysis of rat cortical astrocytes during development in primary culture. Effect of prenatal exposure to ethanol. Int J Dev Biol 36: 311–312, 1992

    Google Scholar 

  126. Mason CA, Edmonson JC, Hatten ME: The extending astroglial process: development of glial cell shape, the growing tip, and interactions with neurons. J Neurosci 8: 3124–3134, 1988

    Google Scholar 

  127. Sivron T, Eitan S, Schreyer DJ, Schwartz M: Astrocytes play a major role in the control of neuronal proliferation. Brain Res 629: 199–208, 1993

    Google Scholar 

  128. Moore SA, Yoder E, Murphy S, Dutton G, Spector AA: Astrocytes, not neurons, produce docosahexaenoic acid (22:6 ω-3) and arachidonic acid (20:4ω6). J Neurochem 56: 518–524, 1991

    Google Scholar 

  129. Nyquist-Battie C, Freter M: Cardiac mitochondrial abnormalities in a mouse model of the fetal alcohol syndrome. Alcohol Clin Exp Res 12: 264–267, 1988

    Google Scholar 

  130. Nyquist-Battie C, Uphoff C, Cole TB: Maternal ethanol consumption effect on skeletal muscle development in guinea-pig offspring. Alcohol 4: 11–16, 1987

    Google Scholar 

  131. Buruah JK, Kinder D: Mitochondria and fetal alcohol syndrome. Exp Pathol 32: 187–188, 1987

    Google Scholar 

  132. Burdge GC, Postle AD: Effect of maternal ethanol consumption during pregnancy on the phospholipid molecular species composition of fetal guinea-pig brain, liver and plasma. Biochim Biophys Acta 1256: 346–353, 1995

    Google Scholar 

  133. Pawlosky RJ, Salem N: Ethanol exposure causes a decrease in docosahexaenoic acid and an increase in docosapentaenoic acid in feline brains and retinas. Am J Clin Nutr 61: 1284–1289, 1995

    Google Scholar 

  134. Miller MW: Effects of alcohol on the generation and migration of cerebral cortical neurons. Science 233: 1308–1310, 1986

    Google Scholar 

  135. Gressens P, Lammens M, Picard JJ, Evrard P: Ethanol induced disturbances of gliogenesis and neurogenesis in the developing murine brain: an in vitro and in vivo immunohistochemical and ultrastructural study. Alcohol 27: 219–226, 1992

    Google Scholar 

  136. Streissguth AP, Landesman-Dwyer S, Martin JC, Smith DW: Tera-.115 togenic effects of alcohol in humans and laboratory animals. Sci ence 209: 353–361, 1980

    Google Scholar 

  137. Hanson JW, Smith DW: The fetal hydantoin syndrome. J Pediatr 87: 285–290, 1975

    Google Scholar 

  138. Tamai H, Wakamiya E, Mino M, Iwakoshi M: Alpha-tocopherol and fatty acid levels in red blood cells in patients treated with antiepileptic drugs. J Nutr Sci Vitamin 34: 627–631, 1988

    Google Scholar 

  139. High KA, Kubow S: n-3 fatty acids inhibit defects and fatty acid changes caused by phenytoin in early gestation in mice. Lipids 29: 771–778, 1994

    Google Scholar 

  140. Martinez M, Pineda M, Vidal R, Conill J, Martin B: Docosahexaenoic acid – a new therapeutic approach to peroxisomal-disorder patients: experience with two cases. Neurology 43: 1389–1397, 1993

    Google Scholar 

  141. Martinez M: Polyunsaturated fatty acids in the developing human brain, erythrocytes in peroxisomal disease: therapeutic implications. J Inher Metab Dis 18 (Suppl. 1): 61–75, 1995

    Google Scholar 

  142. Martinez M: Docosahexaenoic acid therapy in docosahexaenoic aciddeficient patients with disorders of peroxisomal biogenesis. Lipids 31: S-145–S-152, 1996

    Google Scholar 

  143. Borum P: Possible carnitine requirement of the newborn and the effect of genetic disease on the carnitine requirement. Nutr Rev 39: 385–390, 1981

    Google Scholar 

  144. Giovannini M, Agostini C, Salari PC: Is carnitine essential in children? J Int Med Res 19: 88–102, 1991

    Google Scholar 

  145. Melegh B, Hermann R, Harada K: Generation of hydroxymethyllysine from trimethyllysine limits the carnitine biosynthesis in premature infants. Acta Paediatr 85: 345–350, 1996

    Google Scholar 

  146. Lazarow PB, De Duve C: A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci USA 73: 2043–2046, 1976

    Google Scholar 

  147. Kunau WH, Dommes V, Schulz H: β-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Progr Lipid Res 34: 267–342, 1995

    Google Scholar 

  148. Lazo O, Singh AK, Singh I: Postnatal development and isolation of peroxisomes from brain. J Neurochem 56: 1343–1353, 1991

    Google Scholar 

  149. Wanders RJA, Schutgens RBH, Heymans HSA, Collins J, Goldfischer S, Hashimoto T, Schrakamp G, Van Den Bosch H, Tager JM, Schram AW: Biochemical analysis in peroxisomal disorders. In: HD Fahimi, H Sies (eds). Peroxisomes in Biology and Medicine. Springer-Verlag, Berlin, 1987, pp 341–353

    Google Scholar 

  150. Lazarow PB, Small GM, Imanaka T, Shio H, Alexson S, Morlensen RM, Rachubinski RA, Fujiki Y: Biogenesis of peroxisomes in rat liver and Candida tropicalis. In: HD Fahimi, H Sies (eds). Peroxisomes in Biology and Medicine. Springer-Verlag, Berlin, 1987, pp 394–401

    Google Scholar 

  151. Suzuki Y, Orii T, Hashimoto T: Biosynthesis of peroxisomal β-oxidation enzymes in infants with Zellweger syndrome. J Inher Metab Dis 9: 292–296, 1986

    Google Scholar 

  152. Santos MJ, Imanaka T, Shio H, Small GM, Lazarow PB: Peroxisomal membrane ghosts in Zellweger syndrome – aberrant organelle assembly. Science 239: 1536–1538, 1988

    Google Scholar 

  153. Gartner J, Chen WW, Kelly RI, Mihalik SJ, Moser HW: The 22-kD peroxisomal integral membrane protein in Zellweger syndrome – presence, abundance, and association with a peroxisomal thiolase precursor protein. Pediatr Res 29: 141–146, 1991

    Google Scholar 

  154. Hobbs GA, Keilbaugh SA, Reif PM, Simpson MV: Cellular targets of 3′-azido-3′-deoxythymidine: An early (non-delayed) effect on oxidative phosphorylation. Biochem Pharmacol 50: 381–390, 1995

    Google Scholar 

  155. Zeviani M, Mariotti C, Antozzi C, Fratta GM, Austin P, Prelle A: Oxphos defects and mitochondrial DNA mutations in cardiomyopathy. Muscle Nerve 18 (Suppl 3): S170–S174, 1995

    Google Scholar 

  156. Campos Y, Arenas J, Cabello A, Gomez-Reino JJ: Respiratory chain enzyme defects in patients with idiopathic inflammatory myopathy. Ann Rheum Dis 54: 491–493, 1995

    Google Scholar 

  157. Hao H, Bonilla E, Manfredi G, Dimauro S, Moraes CT: Segregation patterns of a novel mutation in the mitochondrial tRNA glutamic acid gene associated with myopathy and diabetes mellitus. Am J Hum Genet 56: 1017–1025, 1995

    Google Scholar 

  158. Reipert S, Berry J, Hughes MF, Hickman JA, Allen TD: Changes of mitochondrial mass in the hemopoietic stem cell line FDCP-mix after treatment with etoposide: A correlative study by multiparameter flow cytometry and confocal and electron microscopy. Exp Cell Res 221: 281–288, 1995

    Google Scholar 

  159. Metzger C, Mayer D, Hoffman H, Bocker T, Hobe G, Benner A, Bannasch P: Sequential appearance and ultrastructural amphophilic cell foci, adenomas, and carcinomas in the liver of male and female rats treated with dehydroepiandrosterone. Toxicol Pathol 23: 591–605, 1995

    Google Scholar 

  160. Black KL, Shiraishi T, Ikezak K, Tabuchi K, Becker DP: Peripheral benzodiazepine stimulates secretion of growth hormone and mitochondrial proliferation in pituitary tumour GH-3 cells. Neurol Res 16: 74–80, 1994

    Google Scholar 

  161. Tokunaga M, Mita S, Sakuta R, Nonaka I, Araki S: Increased mitochondrial DNA in blood vessels and ragged-red fibers in mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Ann Neurol 33: 275–280, 1993

    Google Scholar 

  162. Mueller-Hoecker J, Pongratz D, Huebner G: Activation of mitochondrial ATPase as evidence of loosely coupled oxidative phosphorylation in various skeletal muscle disorders: A histochemical finestructural study. J Neurol Sci 74: 199–214, 1986

    Google Scholar 

  163. Fourcans B, Jain MK: Role of phospholipids in transport and enzymatic reactions. Adv Lipid Res 12: 147–226, 1974

    Google Scholar 

  164. Schagger H, Hagen T, Roth B, Brandt U, Link TA, von Jagow G: Phospholipid specificity of bovine heart bc 1 complex. Eur J Biochem 190: 123–130, 1990

    Google Scholar 

  165. Hulbert AJ, Else PL: Evolution of mammalian endothermic metabolism: mitochondrial activity and cell composition. Am J Physiol 256: R63–R69, 1989

    Google Scholar 

  166. Couture P, Hulbert AJ: Membrane fatty acid composition of tissues is related to body mass of mammals. J Membrane Biol 148: 27–39, 1995

    Google Scholar 

  167. Gudbjarnason G, Doell B, Oskardottir G, Hallgrimson J: Modification of cardiac phospholipids and catecholamine stress tolerance. In: C de Duve, O Hayaishi (eds). Tocopherol, Oxygen and Biomembranes. Elsevier, Amsterdam, 1978, pp 297–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Infante, J.P., Huszagh, V.A. On the molecular etiology of decreased arachidonic (20:4n-6), docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids in Zellweger syndrome and other peroxisomal disorders. Mol Cell Biochem 168, 101–115 (1997). https://doi.org/10.1023/A:1006895209833

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006895209833

Navigation