Skip to main content
Log in

The Blood–Brain Barrier and Bilirubin Encephalopathy

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The pathogenesis of bilirubin encephalopathy is multifactorial, involving the transport of bilirubin or albumin/bilirubin across the blood–brain barrier and delivering bilirubin to target neurons.

2. The relative importance of the blood–brain barrier, unconjugated bilirubin levels, serum binding, and tissue susceptibility in this process is only partially understood. Even at dangerously high serum levels, bilirubin traverses the intact blood–brain barrier slowly, requiring time for encephalopathy to occur, although deposition of bilirubin can be rapid if a surge in plasma unbound bilirubin is produced by administering a drug which competes with bilirubin for binding to albumin.

3. There may be maturational changes in permeability both in the fetus and postnatally which protect the brain from bilirubin.

4. Disruption or partial disruption of the blood–brain barrier by disease or hypoxic ischemic injury will facilitate transport of bilirubin/albumin into brain, but the relative affinities of albumin and target neurons will determine whether the tissue bilirubin load is sufficient for toxicity to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Ahdab-Barmada, M., and Moossy, J. (1984). The neuropathology of kernicterus in the premature neonate: diagnostic problems. J. Neuropath. Exp. Neurol. 43:45–56.

    PubMed  Google Scholar 

  • Ahlfors, C. E., (1981). Effect of serum dilution on apparent unbound bilirubin concentration as measured by the peroxidase method. Clin. Chem. 27:692–696.

    PubMed  Google Scholar 

  • Ahlfors, C. E., and DiBiasio-Erwin, D. (1986). Rate Constants for dissociation of bilirubin from its binding sites in neonatal (cord) and adult sera. J. Pediatr 108:295–298.

    PubMed  Google Scholar 

  • Ahlfors, C. E., Bennett, S. H., Shoemaker, C. T., Ellis, W. G., Davis, S. L., Wennberg, R. P., and Goetzman, B. W. (1986). Changes in the auditory brainstem response associated with intravenous infusion of unconjugated bilirubin into infant rhesus monkeys. Pediatr. Res. 20:511–515.

    PubMed  Google Scholar 

  • Bonnett, R., Davies, J. E., and Hursthouse, M. B. (1976). Structure of bilirubin. Nature 262:326–328.

    Google Scholar 

  • Brann, B. S., IV, Stonestreet, B. S., Oh, W., and Cashore, W. J. (1987). The in vivo effect of bilirubin and sulfisoxazole on cerebral oxygen, glucose, and lactate metabolism in newborn piglets. Pediatr. Res. 22:135–140.

    PubMed  Google Scholar 

  • Bratlid, D. (1972). The effect of pH on bilirubin binding by human erythrocytes. Scand. J. Clin. Lab. Invest. 29:453–459.

    Google Scholar 

  • Bratlid, D., Cashore, W. J., and Oh, W. (1983). Effect of serum hyperosomality on opening of the bloodbrain barrier for bilirubin in rat brain. Pediatrics 71:909–912.

    PubMed  Google Scholar 

  • Bratlid, D., Cashore, W. J., and Oh, W. (1984). Effect of acidosis on bilirubin deposition in rat brain. Pediatrics 73:431–434.

    PubMed  Google Scholar 

  • Brodersen, R. (1974). Competitive binding of bilirubin and drugs to human serum albumin studied by enzymatic oxidation. J. Clin. Invest. 54:1353–1364.

    PubMed  Google Scholar 

  • Brodersen, R. (1979). Binding of bilirubin to albumin. Crit. Rev. Clin. Lab. Sci. 11:305–399.

    Google Scholar 

  • Brodersen, R., and Stern, L. (1990). Deposition of bilirubin acid in the central nervous system-A hypothesis for the development of kernicterus. Acta Paediatr. Scand. 79:12–19.

    PubMed  Google Scholar 

  • Burgess, G. H., Stonestreet, B. S., Cashore, W. J., and Oh, W. (1985a). Brain bilirubin deposition and brain blow during acute urea-induced hyperosmolality of newborn piglets. Pediatr. Res. 19:537–542.

    PubMed  Google Scholar 

  • Burgess, G. H., Oh, W., Bratlid, D., Brubakk A.-M., Cashore, W. J., and Stonestreet, B. S. (1985b). The effects of brain blood flow on brain bilirubin deposition in newborn piglets. Pediatr. Res. 19:691–696.

    PubMed  Google Scholar 

  • Cashore, W. J., Gartner, L. M., Oh, W., and Stern, L. (1978). Clinical application of neonatal bilirubin-binding determinations: Current status. J. Pediatr. 93:827–833.

    PubMed  Google Scholar 

  • Chen, H.-C., Lien, I.-N., and Lu, T.-C. (1965). Kernicterus in newborn rabbits. Am. J. Pathol. 46:331–343.

    PubMed  Google Scholar 

  • Chen, H.-C., Tsai, D.-J., Wang, Y.-C., and Chen, Y.-C. (1969). An electron microscopic and radioautographic study on experimental kernicterus. I. Bilirubin transport via astroglia. Am. J. Pathol. 56:31–58.

    PubMed  Google Scholar 

  • Chen, H.-C., Wang, C.-H., Tsan, K.-W., and Chen, Y.-C. (1971). An electron microscopic and radioautographic study on experimental kernicterus. II. Bilirubin movement with neurons and release of waste products via astroglia. Am. J. Pathol. 64:45–66.

    PubMed  Google Scholar 

  • Chiueh, C. C., Sun, C. L., Kopin, I. J., Fredericks, W. R., and Rapoport, S. I. (1978). Entry of 3H-epinephrine, 125I-albumin and Evans blue from blood into the brain following unilateral osmotic opening of the blood-brain barrier. Brain Res. 145:291–301.

    PubMed  Google Scholar 

  • Cowger, M. L. (1971). Mechanism of bilirubin toxicity on tissue culture cells: factors that affect toxicity, reversibility by albumin, and comparisons with other respiratory poisons and surfactants. Biochem. Med. 5:1–16.

    PubMed  Google Scholar 

  • Cowger, M. L., Igo, R. P., and Labbe, R. F. (1965) The mechanism of bilirubin toxicity studies with purified respiratory enzyme and tissue culture systems. Biochemistry 4:2763–2770

    PubMed  Google Scholar 

  • Day, R. L. (1954). Inhibition of brain respiration in vitro by bilirubin: Reversal of inhibition by various means. Proc. Soc. Exp. Biol. Med. 85:261–264.

    PubMed  Google Scholar 

  • Diamond, I., and Schmid, R. (1966). Experimental bilirubin encephalopathy: The mode of entry of bilirubin-14C into the central nervous system. J. Clin. Invest. 45:678–689.

    PubMed  Google Scholar 

  • Ebbesen, F., and Brodersen, R. (1982). Risk of bilirubin acid precipitation in preterm infants with respiratory distress syndrome: Considerations of blood/brain bilirubin transfer equilibrium. Early Hum. Dev. 6:341–355.

    PubMed  Google Scholar 

  • Faerch, T., and Jacobsen, J. (1997). Kinetics of the binding of bilirubin to human serum albumin studied by stopped-flow technique. Arch. Biochem. Biophys. 184:282–289.

    Google Scholar 

  • Funato, M., Tamai, H., Shimada, S., and Nakamura, H. (1994). Vigintiphobia, unbound bilirubin, and auditory brainstem responses. Pediatrics 93:50–53.

    PubMed  Google Scholar 

  • Gartner, L. M., Snyder, R. N., Chabon, R. S., and Berstein, J. (1970). Kernicterus: High incidence in premature infants with low serum bilirubin concentrations. Pediatrics 45:906–917.

    PubMed  Google Scholar 

  • Habgood, M. D., Sedgwick, J. E., Dziegielewska, K. M., and Saunders, N. R. (1992). A developmentally regulated blood-cerebrospinal fluid transfer mechanism for albumin in immature rats. J. Physiol. 456:181–192.

    PubMed  Google Scholar 

  • Hahm, J. S., Ostrow, J. D., Mukerjee, P., and Celic, L. (1992). Ionization and self-association of unconjugated bilirubin, determined by rapid solvent partition from chloroform, with further studies of bilirubin solubility. J. Lipid Res. 33:1123–1137.

    PubMed  Google Scholar 

  • Hansen, P. E., Thiessen, H., and Brodersen, R. (1979). Bilirubin acidity. Titrimetric and 13C NMR studies. Acta Chem. Scand. B33:281.

    Google Scholar 

  • Hansen, T. W. R., Øyasæter, S., Stiris, T., and Bratlid, D. (1989). Effects of sulfisoxazole, hypercarbia, and hyperosmolality on entry of bilirubin and albumin into brain regions of young rats. Biol. Neonate 56:22–30.

    PubMed  Google Scholar 

  • Haymaker, W., Margoles, C., Pentschew, A., Jacob, H., Lindenberg, R., and Arroyo, L. S. (1961). Pathology of kernicterus and posticteric encephalopathy. In Swinyard, C. A. (ed.), Kernicterus and Its Importance in Cerebral Palsy, Charles C Thomas, Springfield, IL, pp. 21–228.

    Google Scholar 

  • Hsia, D. Y.-Y., Allen, F. H., Gellis, S. S., and Diamond, L. K. (1952). Erythroblastosis fetalis. VIII. Studies of serum bilirubin in relation to kernicterus. N. Engl. J. Med. 247:668–681.

    PubMed  Google Scholar 

  • Ives, N. K., and Gardiner, R. M. (1990). Blood-brain barrier permeability to bilirubin in the rat studied using intracarotid bolus injection and in situ brain perfusion techniques. Pediatr. Res. 27:436–441.

    PubMed  Google Scholar 

  • Ives, N. K., Bolas, N. M., and Gardiner, R. M. (1989). The effects of bilirubin on brain energy metabolism during hyperosmolar opening of the blood-brain barrier: An in vivo study using 31P nuclear magnetic resonance spectroscopy. Pediatr. Res. 26:356–361.

    PubMed  Google Scholar 

  • Jacobsen, J. (1969). Binding of bilirubin to human serum albumin: determination of the dissociation constants. FEBS Lett. 5: 112–114.

    PubMed  Google Scholar 

  • Jacobsen, J., and Brodersen, R. (1976). The effect of pH on albumin-bilirubin binding. Birth Defects Orig. Art. Ser. 12:175–178.

    Google Scholar 

  • Jacobsen, J., and Wennberg, R. P. (1974). Determination of unbound bilirubin in the serum of newborns. Clin. Chem. 20:783–789.

    PubMed  Google Scholar 

  • Jardine, D. S., and Rogers, K. (1989). Relationship of benzyl alcohol to kernicterus, intraventricular hemorrhage, and mortality in preterm infants. Pediatrics 83:153–160.

    PubMed  Google Scholar 

  • Johnson, L., Garcia, M. L., Figueroa, E., and Sarmiento, F. (1961). Kernicterus in rats lacking glucuronyl transferase. II. Factors which alter bilirubin concentration and frequency of kernicterus. Am. J. Dis. Child. 101:322–349.

    PubMed  Google Scholar 

  • Kapitulnik, J., Horner-Mibashan, R., Blondheim, S., Kaufmann, N. A., and Russell, A. (1975). Increase in bilirubin-binding affinity of serum with age of infant. J. Pediatr. 86:442–445.

    PubMed  Google Scholar 

  • Katoh-Semba, R., and Kashiwamata, S. (1980). Interactions of bilirubin with brain capillaries and its toxicity. Biochim. Biophys. Acta 632:290–297.

    PubMed  Google Scholar 

  • Lee, C., Oh, W., Stonestreet, B. S., and Cashore, W. J. (1989). Permeability of the blood brain barrier for 125I-albumin-bound bilirubin in newborn piglets. Pediatr. Res. 25:452–456.

    PubMed  Google Scholar 

  • Lee, C., Stonestreet B. S., Oh, W., Outerbridge, E. W., and Cashore, W. J. (1995). Postnatal maturation of the blood-brain barrier for unbound bilirubin in newborn piglets. Brain Res. 689:233–238.

    PubMed  Google Scholar 

  • Lee, J. J., Daly, L. H., and Cowger, M. L. (1974). Bilirubin ionic equilibria: Their effects on spectra and on conformation. Res. Commun. Chem. Pathol. Pharm. 9:763–770.

    Google Scholar 

  • Lending, M., Slobody, L. B., and Mestern, J. (1967). The relationship of hypercapnia to the production of kernicterus. Dev. Med. Child. Neurol. 9:145–151.

    PubMed  Google Scholar 

  • Lenhardt, M. L., McArtor, R., and Bryant, B. (1984). Effects of neonatal hyperbilirubinemia on the brainstem electric response. J. Pediatr. 104:281–284.

    PubMed  Google Scholar 

  • Levine, R. L., Fredericks, W. R., and Repoport, S. I. (1982). Entry of bilirubin into the brain due to opening of the blood brain barrier. Pediatrics 69:255–259.

    PubMed  Google Scholar 

  • Lucey, J. F., Hibbard, E., Behrman, R. D., Esquivel de Gallardo, F. O., and Windle, W. F. (1964). Kernicterus in asphyxiated newborn rhesus monkeys. Exp. Neurol. 9:43–58.

    Google Scholar 

  • McCandless, D. W., and Abel, M. S. (1980). The effect of unconjugated bilirubin on regional cerebellar energy metabolism. Neurobehav. Toxicol. 2:81–84.

    PubMed  Google Scholar 

  • Matsuoka, Y., et al. (1999). J. Neurobiol. 39:383–392.

    PubMed  Google Scholar 

  • Møllgård, K., and Saunders, N. R. (1986). The development of the human blood-brain and blood-CSF barriers. Neuropathol. Appl. Neurobiol. 12:337–358.

    PubMed  Google Scholar 

  • Mustafa, M. G., Cowger, M. L., and King. T. E. (1969). Effects of bilirubin on mitochondrial reactions. J. Biol. Chem. 244:6403–6414.

    PubMed  Google Scholar 

  • Nakamura, H., Takada, S., Shimabuku, R., Matsuo, M., Matsuo, T., and Negishi, H. (1985). Auditory nerve and brainstem responses in newborn infants with hyperbilirubinemia. Pediatrics 75:703–708.

    PubMed  Google Scholar 

  • Nelson, T., Jacobsen, J., and Wennberg, R. P. (1974). Effect of pH on the interaction of bilirubin with albumin and tissue culture cells. Pediatr. Res. 8:963–967.

    PubMed  Google Scholar 

  • Noir, B. A., Boveris, A., Garaza Pereira, A. M., and Stoppani, A. O. M. (1972). Bilirubin: A multi-site inhibitor of mitochondrial respiration. FEBS Lett. 27:270–274.

    PubMed  Google Scholar 

  • Nwaesei, C. G., Van Aerde, J., Boyden, M., and Perlman, M. (1984). Changes in auditory brainstem responses in hyperbilirubinemia infants before and after exchange transfusion. Pediatrics 75:800–803.

    Google Scholar 

  • Odell, G. B. (1959). Studies in kernicterus. I. The protein binding of bilirubin. J. Clin. Invest. 38:823–833.

    PubMed  Google Scholar 

  • Odell, G. B. (1965). Influence of pH on distribution of bilirubin between albumin and mitochondria. Proc. Soc. Exp. Biol. Med. 120:352–354.

    PubMed  Google Scholar 

  • Ohsugi, M., Sato, H., and Yamamura, H. (1992). Transfer of 125I-albumin from blood to brain in newborn rats and the effect of hyperbilirubinemia on the transfer. Biol. Neonate 62:47–54.

    PubMed  Google Scholar 

  • Øie, S., Levy, G. (1979). Effect of sulfisoxazole on pharmacokinetics of free and plasma protein-bound bilirubin in experimental unconjugated hyperbilirubinemia. J. Pharm. Sci. 68:6–9.

    PubMed  Google Scholar 

  • Oldendorf, W. H. (1970). Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res. 24:372–376.

    PubMed  Google Scholar 

  • Perlman, M., Fainmesser, P., Sohmer, H., Tamari, H., Wax, Y., and Pevsmer, B. (1983). Auditory nerve-brainstem evoked responses in hyperbilirubinemic neonates. Pediatrics 72:658–664.

    PubMed  Google Scholar 

  • Plateel, M., Teissier, E., and Cecchelli, R. (1997) Hypoxia dramatically increases the nonspecific transport of blood-borne proteins to the brain. J. Neurochem. 68:874–877.

    PubMed  Google Scholar 

  • Rapoport, S. I., Fredericks, W. R., Ohno, K., and Pettigrew, K. D. (1980). Quantitative aspects of reversible osmotic opening of the blood-brain barrier. Am. J. Physiol. 238:R421-R431.

    PubMed  Google Scholar 

  • Ritter, D. A., Kenny, J. D., Norton, H., and Rudolph, A. J. (1982). A prospective study of free bilirubin and other risk factors in the development of kernicterus in premature infants. Pediatrics 69:260–266.

    PubMed  Google Scholar 

  • Robertson, A., Karp, W., and Brodersen, R. (1991). Bilirubin displacing effect of drugs used in neonatology. Acta Paediatr. Scand. 80:1119–1127.

    PubMed  Google Scholar 

  • Robinson, P. J., and Rapoport, S. I. (1987). Binding effect of albumin on uptake of bilirubin by brain. Pediatrics 79:553–558.

    PubMed  Google Scholar 

  • Roger, C., Koziel, V., Vort, P., and Nehlig, A. (1993). Effects of bilirubin infusion on local cerebral glucose utilization in the immature rat. Brain Res. Dev. Brain Res. 76:115–130.

    PubMed  Google Scholar 

  • Rozdilsky, B. (1966). Kittens as experimental model for study of kernicterus. Am. J. Dis. Child. 111:161–165.

    PubMed  Google Scholar 

  • Rozdilsky, B., and Olszewski, J. (1960). Permeability of cerebral vessels to albumin in hyperbilirubinemia. Neurology 10:631–638.

    PubMed  Google Scholar 

  • Rozdilsky, B., and Olszewski, J. (1961). Experimental study of the toxicity of bilirubin in newborn animals. J. Neuropathol. Exp. Neurol. 20:193–205.

    PubMed  Google Scholar 

  • Sawitsky, A., Cheung, W. H., and Seifter, E. (1968). The effect of pH on the distribution of bilirubin in peripheral blood, cerebrospinal fluid, and fat tissues. J. Pediatr. 72:700–707.

    PubMed  Google Scholar 

  • Schiff, D., Chan, G., and Poznansky, M. J. (1985). Bilirubin toxicity in neural cell lines N115 and NBR10A. Pediatr. Res. 19:908–911.

    PubMed  Google Scholar 

  • Schumacher, U., and Mollgård, K. (1997). Histochem. Cell Biol. 108:179–182.

    PubMed  Google Scholar 

  • Silberberg, D. H., Johnson, L., and Ritter, L. (1970). Factors influencing toxicity of bilirubin in cerebellar tissue culture. J. Pediatr. 77:386–396.

    PubMed  Google Scholar 

  • Silverman, W. A., Anderson, D., Blanc, W., and Crozier, D. N. (1956). A difference in mortality rate and incidence of kernicterus among premature infants allotted to two prophylactic antibacterial regimens. Pediatrics 18:614–625.

    PubMed  Google Scholar 

  • Stonestreet, B. S., Patlak, C. S., Pettigrew, K. D., Reily, C. B., and Cserr, H. F. (1996). Ontogeny of blood-brain barrier function in ovine fetuses, lambs, and adults. Am. J. Physiol. 271:R1594-R1601.

    PubMed  Google Scholar 

  • Svenson, A. E., Holmer, and Andersson L.-O. (1974). A new method for the measurement of dissociation rates for complexes between small ligands and proteins as applied to the palmitate and bilirubin complexes with serum albumin. Biochim. Biophys. Acta 342:54–59.

    PubMed  Google Scholar 

  • Takahashi, M., Sugiyama, K., Shumiya, S., and Nagase, S. (1984). Penetration of bilirubin into the brain in albumin-deficient and jaundiced rats (AJR) and Nagase analbuminemic rats (NAR). J. Biochem. 96:1705–1712.

    PubMed  Google Scholar 

  • Takasato, Y., Rapoport, H. I., and Smith Q. R. (1984). An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 247:H484-H493.

    PubMed  Google Scholar 

  • Valaes, T., Kapitulnik, J., Kaufman, N. A., and Blondheim, S. H. (1976). Experience with Sephadex gel filtration in assessing the risk of bilirubin encephalopathy in neonatal jaundice. Birth Defects Orig. Art. Ser. 12:215–228.

    Google Scholar 

  • Van Praagh, R. (1961). Diagnosis of kernicterus in the neonatal period. Pediatrics 28:870–876.

    PubMed  Google Scholar 

  • Vohr, B. R., Lester, B., Rapisardi, G., O'Dea, C., Brown, L., Peucker, M., Cashore, W., and Oh, W. (1989). Abnormal brain-stem function (brainstem auditory evoked response) correlates with acoustic cry features in term infants with hyperbilirubinemia. J. Pediatr. 115:303–308.

    PubMed  Google Scholar 

  • Watchko, J. F., et al. (1998). Pediatr. Res. 44:763–766.

    PubMed  Google Scholar 

  • Wennberg, R. P. (1983). In Levine, R. L., and Maisels, M. J. (eds.), Hyperbilirubinemia in the newborn. Report of the 85th Ross Conference on Pediatric Research, Ross Laboratories, Columbus, OH, p. 122.

    Google Scholar 

  • Wennberg, R. P. (1988). The importance of free bilirubin acid salt in bilirubin uptake by erythrocytes and mitochondria. Pediatr. Res. 23:443–447.

    PubMed  Google Scholar 

  • Wennberg, R. P. (1990). Bilirubin encephalopathy: Role of the blood-brain barrier. In Johansson, B. B., Owman, C., and Widner, H. (eds.), Pathophysiology of the Blood-Brain Barrier: Long Term Consequences of Barrier Dysfunction for the Brain, Fernström Foundation Series, Vol. 14, Elsevier Science, Amsterdam, pp. 269–278.

    Google Scholar 

  • Wennberg, R. P., and Hance, A. J. (1986). Experimental encephalopathy: Importance of total bilirubin, protein binding, and blood-brain barrier. Pediatr. Res. 20:789–792.

    PubMed  Google Scholar 

  • Wennberg, R. P., Ahlfors, C. E., Bickers, R., McMurtry, C. A., and Shetter, J. L. (1982). Abnormal auditory brainstem response in a newborn infant with hyperbilirubinemia: improvement with exchange transfusion. J. Pediatr. 100:624–626.

    PubMed  Google Scholar 

  • Wennberg, R. P., Johanssen, B. B., Folbergrova, J., and Siesjo, B. K. (1991). Bilirubin-induced changes in brain energy metabolism after osmotic opening of the blood-brain barrier. Pediatr. Res. 30:473–478.

    PubMed  Google Scholar 

  • Wennberg, R., Rhine, W., Gospe, S., Seyal, M., Saeed, D., and Sosa, G. (1993). Brainstem bilirubin toxicity in the newborn primate may be promoted and reversed by modulating pCO2. Pediatr. Res. 34:6–9.

    PubMed  Google Scholar 

  • Zetterström, R., and Ernster, L. (1956). Bilirubin, an uncoupler or oxidative phosphorylation in isolated mitochondria. Nature 178:1335–1336.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wennberg, R.P. The Blood–Brain Barrier and Bilirubin Encephalopathy. Cell Mol Neurobiol 20, 97–109 (2000). https://doi.org/10.1023/A:1006900111744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006900111744

Navigation