Skip to main content
Log in

In Vivo and in Vitro Assessment of Baseline Blood-Brain Barrier Parameters in the Presence of Novel Nanoparticles

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Nanoparticles have advantage as CNS drug delivery vehicles given they disguise drug permeation limiting characteristics. Conflicting toxicological data, however, is published with regard to blood-brain barrier integrity and gross mortality.

Methods. To address this issue two novel nanoparticle types: “emulsifying wax/Brij 78”and Brij 72/Tween 80 nanoparticles were evaluated in vivo for effect on cerebral perfusion flow, barrier integrity, and permeability using the in situ brain perfusion technique. Additional evaluation was completed in vitro using bovine brain microvessel endothelial cells for effect on integrity, permeability, cationic transport interactions, and tight junction protein expression.

Results. In the presence of either nanoparticle formulation, no overall significant differences were observed for cerebral perfusion flow in vivo. Furthermore, observed in vitro and in vivo data showed no statistical changes in barrier integrity, membrane permeability, or facilitated choline transport. Western blot analyses of occludin and claudin-1 confirmed no protein expression changes with incubation of either nanoparticle.

Conclusions. The nanoparticle formulations appear to have no effect on primary BBB parameters in established in vitro and in vivo blood-brain barrier models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. M. Butte, H. C. Jones, and N. J. Abbott. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 429:47-62 (1990).

    Google Scholar 

  2. Q. R. Smith. Advances in Neurology. In R. Wurtman (ed.), Alzheimer's Disease Volume 51, Raven Press, New York, 1990, pp. 217-222.

    Google Scholar 

  3. P. R. Lockman, R. J. Mumper, M. A. Kahn, and D. D. Allen. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev. Ind. Pharm. 28:1-12 (2002).

    Google Scholar 

  4. J. Kreuter. Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev. 47:65-81 (2001).

    Google Scholar 

  5. J. C. Olivier, L. Fenart, L. R. Chauvet, C. Pariat, R. Cecchelli, and W. Couet. Indirect evidence that drug brain targeting using polysorbate-80 coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm. Res. 16:1836-1842 (1999).

    Google Scholar 

  6. C. Lherm, R. H. Muller, F. Puiseieux, and P. Couvreur. Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int. J. Pharm. 84:13-22 (1992).

    Google Scholar 

  7. R. H. Muller, C. Lherm, J. Herbort, and P. Couvreur. In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials 11:590-595 (1990).

    Google Scholar 

  8. L. Grislain, P. Couvreur, V. Lenaerts, M. Roland, D. Deprez-Decampeneere, and P. Speiser. Pharmacokinetics and distribution of a biodegradable drug carrier. Int. J. Pharm. 15:335-345 (1983).

    Google Scholar 

  9. S. I. Rapoport, K. Ohno, W. R. Fredericks, and K. D. Pettigrew. Regional cerebrovascular permeability to [14C]-sucrose after osmotic opening of the blood-brain barrier. Brain Res. 150:653-657 (1978).

    Google Scholar 

  10. N. H. Greig. Drug delivery to the brain by blood-brain barrier circumvention and drug modification. In E. A. Neuwelt Neuwelt (ed), Implications of the Blood-Brain Barrier and its Manipulation, Plenum press: New York, 1989, pp. 311-367.

    Google Scholar 

  11. R. N. Alyaudtin, A. Reichel, R. Lobenberg, P. Ramge, J. Kreuter, and D. J. Begley. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro. J. Drug Target. 9:209-221 (2001).

    Google Scholar 

  12. U. Bickel. Intravenous Injection/Pharmacokinetics. In: W. M. Pardridge, (ed.), Introduction to the Blood Brain Barrier, Cambridge University Press, Cambridge, 1998, pp 4-48.

    Google Scholar 

  13. S. Steiniger, D. Senker, H. von Briesen, D. Begley, J. Kreuter. The influence of polysorbate 80-coated nanoparticles on bovine brain capillary endothelial cells in vitro, Proc. Int. Symp. Control Rel. Bioact. Mater. 26:789-90 (1999).

    Google Scholar 

  14. M. O. Oyewumi and R. J. Mumper. Gadolinium-loaded nanoparticles engineered from microemulsion templates. Drug Dev. Ind. Pharm. 28:317-328 (2002).

    Google Scholar 

  15. Y. Takasato, S. I. Rappaport, and Q. R. Smith. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 247:484-493 (1984).

    Google Scholar 

  16. Q. R. Smith. Brain perfusion systems for studies of drug uptake and metabolism in the central nervous system. Pharm. Biotechnol. 8:285-307 (1996).

    Google Scholar 

  17. D. D. Allen, J. Oki, and Q. R. Smith. An update in the in situ rat brain perfusion technique: simpler, faster, better. Pharm. Res. 14:337(1997).

    Google Scholar 

  18. S. Momma, M. Aoyagi, S. I. Rappaport, and Q. R. Smith. Phenylalanine transport across the blood-brain barrier as studied by the in situ perfusion technique. J. Neurochem. 48:1291-1300 (1987).

    Google Scholar 

  19. K. L. Audus and R. T. Borchardt. Characterization of an in vitro blood-brain barrier model system for studying drug transport and metabolism. Pharm. Res. 3:81-87 (1986).

    Google Scholar 

  20. T. J. Abbruscato, S. A. Williams, A. Misicka, A. W. Lipkowski, V. J. Hruby, and T. P. Davis. Blood-to-central nervous system entry and stability of biphalin, a unique double-enkephalin analog, and its halogenated derivatives. J. Pharmacol. Exp. Ther. 276:1049-1057 (1996).

    Google Scholar 

  21. K. L. Audus and R. T. Borchardt. Bovine brain microvessel endothelial cell monolayers as a model system for the blood-brain barrier. Ann. NY Acad. Sci. 507:9-18 (1987).

    Google Scholar 

  22. J. M. Rose and K. L. Audus. Receptor-mediated angiotensin II transcytosis by brain microvessel endothelial cells. Peptides 19:1023-1030 (1998).

    Google Scholar 

  23. K. Miyake, S. Takeo, and H. Kaijihara. Sustained decrease in brain regional blood flow after microsphere embolism in rats. Stroke 24:415-420 (1993).

    Google Scholar 

  24. Q. R. Smith. Quantitation of Blood-brain Barrier Permeability. In E. A. Neuwelt, (ed.), Implications of the Blood-brain Barrier and its Manipulation, Volume 1, Plenum Press, New York, 1989, pp. 85-118.

    Google Scholar 

  25. T. J. Abbruscato and T. P. Davis. Combination of hypoxia/aglycemia compromises in vitro blood-brain barrier integrity. J. Pharmacol. Exp. Ther. 289:668-675 (1999).

    Google Scholar 

  26. Q. R. Smith and Y. Takasato. Kinetics of amino acid transport at the blood-brain barrier studied using an in situ brain perfusion technique. Ann. NY Acad. Sci. 481:186-201 (1986).

    Google Scholar 

  27. D. D. Allen and Q. R. Smith. Characterization of the blood-brain barrier choline transporter using the in situ rat brain perfusion technique. J. Neurochem. 76:1-11 (2001).

    Google Scholar 

  28. P. R. Lockman and D. D. Allen. The transport of choline: A review. Drug Dev. Ind. Pharm. 28:749-771 (2002).

    Google Scholar 

  29. M. Furuse, H. Sasaki, K. Fujimoto, and S. Tsukita. A single gene product, claudin-1 or-2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell Biol. 143:391-401 (1998).

    Google Scholar 

  30. M. S. Blum, E. Toninelli, J. M. Anderson, M. S. Balda, J. Zhou, L. O'Donnell, R. Pardi, and J. R. Bender. Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am. J. Physiol. Heart Circ. Physiol. 273:H286-H294 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockman, P.R., Koziara, J., Roder, K.E. et al. In Vivo and in Vitro Assessment of Baseline Blood-Brain Barrier Parameters in the Presence of Novel Nanoparticles. Pharm Res 20, 705–713 (2003). https://doi.org/10.1023/A:1023492015851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023492015851

Navigation