Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voice-selective areas in human auditory cortex

Abstract

The human voice contains in its acoustic structure a wealth of information on the speaker's identity and emotional state which we perceive with remarkable ease and accuracy1,2,3. Although the perception of speaker-related features of voice plays a major role in human communication, little is known about its neural basis4,5,6,7. Here we show, using functional magnetic resonance imaging in human volunteers, that voice-selective regions can be found bilaterally along the upper bank of the superior temporal sulcus (STS). These regions showed greater neuronal activity when subjects listened passively to vocal sounds, whether speech or non-speech, than to non-vocal environmental sounds. Central STS regions also displayed a high degree of selectivity by responding significantly more to vocal sounds than to matched control stimuli, including scrambled voices and amplitude-modulated noise. Moreover, their response to stimuli degraded by frequency filtering paralleled the subjects' behavioural performance in voice-perception tasks that used these stimuli. The voice-selective areas in the STS may represent the counterpart of the face-selective areas in human visual cortex8,9; their existence sheds new light on the functional architecture of the human auditory cortex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experiment 1.
Figure 2: Experiment 2.
Figure 3: Experiment 3.

Similar content being viewed by others

References

  1. Doehring, D. G. & Bartholomeus, B. N. Laterality effect in voice recognition. Neuropsychologia 9, 425–430 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Papcun, G., Kreiman, J. & Davis, A. Long-term memory for unfamiliar voices. J. Acoust. Soc. Am. 85, 913–925 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Van Dommelen, W. A. Acoustic parameters in human speaker recognition. Lang. Speech 33(3), 259–272 ( 1990).

    Article  MathSciNet  Google Scholar 

  4. Assal, G., Aubert, C. & Buttet, J. Asymétrie cérébrale et reconnaissance de la voix. Rev. Neurol. 137, 255– 268 (1981).

    CAS  PubMed  Google Scholar 

  5. Van Lancker, D. R. & Canter, G. J. Impariment of voice and face recognition in patients with hemispheric damage. Brain Cogn. 1, 185–195 ( 1982).

    Article  CAS  PubMed  Google Scholar 

  6. Van Lancker, D. R., Kreiman, J. & Cummings, J. Voice perception deficits: Neuroanatomical correlates of phonagnosia. J. Clin. Exp. Neuropsychol. 11, 665–674 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Imaizumi, S. Vocal identification of speaker and emotion activates different brain regions. NeuroReport 8, 2809–2812 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCarthy, G., Puce, A., Gore, J. C. & Allison, T. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Klatt, D. H. & Klatt, L. C. Analysis, synthesis, and perception of voice quality variations among female and male talkers. J. Acoust. Soc. Am. 87, 820–857 ( 1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zatorre, R. J., Evans, A. C., Meyer, E. & Gjedde, A. Lateralization of phonetic and pitch discrimination in speech processing. Science 256, 846–849 ( 1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Dehaene, S. et al. Anatomical variability in the cortical representation of first and second language. NeuroReport 8, 3809 –3815 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Binder, J. R., Frost, J. A. & Bellgowan, P. S. F. Superior temporal sulcus (STS) responses to speech and nonspeech auditory stimuli. J. Cogn. Neurosci. 11 (Suppl. 1), 99 (1999).

    Google Scholar 

  14. Seltzer, B. & Pandya, D. N. Afferent connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 149, 1–24 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Pandya, D. N. Anatomy of the auditory cortex. Rev. Neurol 151, 486–494 (1995).

    CAS  PubMed  Google Scholar 

  16. Jones, E. G., Dell’Anna, M. E., Molinari, M., Rausell, E. & Hashikawa, T. Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. J. Comp. Neurol. 362, 153–170 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Rauschecker, J. P. Parallel processing in the auditory cortex of primates. Audiol. Neuro-Otol. 3, 86–103 ( 1998).

    Article  CAS  Google Scholar 

  18. Kaas, J. H., Hackett, T. A. & Tramo, M. J. Auditory processing in primate cerebral cortex. Curr. Opin. Neurobiol. 9, 154–170 (1999).

    Article  Google Scholar 

  19. Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    Article  PubMed  Google Scholar 

  20. Ellis, A. W. in Handbook of Research on Face Processing (eds Young, A. W. & Ellis, H. D.) 207–215 (Elsevier, Amsterdam, 1989).

    Book  Google Scholar 

  21. Watzlawick, P., Beavin, J. H. & Jackson, D. D. in A Study of Interactional Patterns, Pathologies and Paradoxes (Norton, New York, 1967).

    Google Scholar 

  22. Rendall, D., Owren, M. J. & Rodman, P. S. The role of vocal trace filtering in identity cueing in rhesus monkey (Macaca mulatta) vocalizations. J. Acoust. Soc. Am. 103, 602–614 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Belin, P., Zatorre, R. J., Hoge, R., Pike, B. & Evans, A. C. Event-related fMRI of the auditory cortex. NeuroImage 10, 417–429 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  24. Hall, D. et al. “Sparse” temporal sampling in auditory fMRI. Hum. Brain Map 7, 213–223 (1999).

    Article  CAS  Google Scholar 

  25. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

  26. Collins, D. L., Neelin, P., Peters, T. M. & Evans, A. C. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J. Comput. Assist. Tomogr. 18, 192–205 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Turner, R. & Jezzard, P. in Functional Neuroimaging Technical Foundations (eds Thatcher, R. W., Hallett, M., Zeffiro, T., John, E. R. & Huerta, M.) 69–78 (Academic, San Diego, 1994).

  28. Worsley, K. J., Evans, A. C., Marrett, S. & Neelin, P. A three-dimensional statistical analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab. 12, 900 –918 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Milot, P. Bermudez, M. Bouffard, C. Hurst, A. Cormier, G. Leroux, V. Petre and J. Fiedsend for assistance in data acquisition and analysis, T. Paus, A. Evans, M.-H. Grosbras, I. Lussier, J. Hillenbrand, R. Hoge, G. Legoualher, M.-C. Masure, P. Neelin, K. Worsley and Y. Samson for advice, and N. Kanwisher for seminal discussion. This work was supported by France-Télécom, MRC (Canada), McDonnel-Pew, INSERM-FRSQ and NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Belin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belin, P., Zatorre, R., Lafaille, P. et al. Voice-selective areas in human auditory cortex. Nature 403, 309–312 (2000). https://doi.org/10.1038/35002078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002078

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing