Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Longitudinal extensive transverse myelitis—it's not all neuromyelitis optica

Abstract

Longitudinal extensive transverse myelitis (LETM) is defined as a spinal cord lesion that extends over three or more vertebrae, as seen on MRI of the spine. The clinical presentation of a patient with LETM is often dramatic and can consist of paraparesis or tetraparesis, sensory disturbances, and gait, bladder, bowel and/or sexual dysfunction. LETM is a characteristic feature of neuromyelitis optica, but such spinal lesions can also occur in various other autoimmune and inflammatory diseases that involve the CNS—such as multiple sclerosis, sarcoidosis or Sjögren syndrome—or in infectious diseases with CNS involvement. Patients with a neoplastic disorder or traumatic spinal cord injury can also present with longitudinal spinal lesions. In this Review, the signs and symptoms that suggest various etiologies and differential diagnoses of LETM are described, and illustrated by educational case studies. The best therapeutic options for patients with each diagnosis are also discussed.

Key Points

  • Longitudinal extensive transverse myelitis (LETM) is a rare but disabling condition, defined as a lesion of the spinal cord that extends over three or more vertebrae on MRI

  • A thorough work-up of patients with suspected LETM is essential to determine the underlying cause of the lesion

  • Evaluation of a patient with LETM should include MRI of the spinal cord and the brain, investigation of cerebrospinal fluid, and detection of cause-specific markers in the blood

  • Therapeutic strategies for patients with LETM will depend on the underlying cause of the lesion, and appropriate treatment should be initiated as early as possible

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MRI scans from a patient with Sjögren syndrome.
Figure 2: MRI scans from a patient with tuberculosis.
Figure 3: MRI scan from a patient with spinal cord lymphoma.
Figure 4: Radiological features of conditions associated with LETM.
Figure 5: MRI scans of the spinal cord lesion in a patient with anterior spinal artery infarction.
Figure 6: Karnaugh–Veitch diagram outlining the clinical parameters to be considered in the differential diagnosis of LETM.

Similar content being viewed by others

References

  1. Transverse Myelitis Consortium Working Group. Proposed diagnostic criteria and nosology of acute transverse myelitis. Neurology 59, 499–505 (2002).

  2. Jacob, A. & Weinshenker, B. G. An approach to the diagnosis of acute transverse myelitis. Semin. Neurol. 28, 105–120 (2008).

    Article  Google Scholar 

  3. Frohman, E. M. & Wingerchuk, D. M. Clinical practice. Transverse myelitis. N. Engl. J. Med. 363, 564–572 (2010).

    Article  CAS  Google Scholar 

  4. Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004).

    Article  CAS  Google Scholar 

  5. Wingerchuk, D. M., Lennon, V. A., Pittock, S. J., Lucchinetti, C. F. & Weinshenker, B. G. Revised diagnostic criteria for neuromyelitis optica. Neurology 66, 1485–1489 (2006).

    Article  CAS  Google Scholar 

  6. Bou-Haidar, P., Peduto, A. J. & Karunaratne, N. Differential diagnosis of T2 hyperintense spinal cord lesions: part A. J. Med. Imaging Radiat. Oncol. 52, 535–543 (2008).

    Article  CAS  Google Scholar 

  7. Bou-Haidar, P., Peduto, A. J. & Karunaratne, N. Differential diagnosis of T2 hyperintense spinal cord lesions: part B. J. Med. Imaging Radiat. Oncol. 53, 152–159 (2009).

    Article  CAS  Google Scholar 

  8. Do-Dai, D. D., Brooks, M. K., Goldkamp, A., Erbay, S. & Bhadelia, R. A. Magnetic resonance imaging of intramedullary spinal cord lesions: a pictorial review. Curr. Probl. Diagn. Radiol. 39, 160–185 (2010).

    Article  Google Scholar 

  9. Jarius, S. et al. Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J. Neurol. Sci. 306, 82–90 (2011).

    Article  CAS  Google Scholar 

  10. Pittock, S. J. et al. Brain abnormalities in neuromyelitis optica. Arch. Neurol. 63, 390–396 (2006).

    Article  Google Scholar 

  11. Pittock, S. J. et al. Neuromyelitis optica brain lesions localized at sites of high aquaporin 4 expression. Arch. Neurol. 63, 964–968 (2006).

    Article  Google Scholar 

  12. Wingerchuk, D. M. Diagnosis and treatment of neuromyelitis optica. Neurologist 13, 2–11 (2007).

    Article  Google Scholar 

  13. Cassinotto, C. et al. MRI of the spinal cord in neuromyelitis optica and recurrent longitudinal extensive myelitis. J. Neuroradiol. 36, 199–205 (2009).

    Article  CAS  Google Scholar 

  14. Weinshenker, B. G. et al. Neuromyelitis optica IgG predicts relapse after longitudinally extensive transverse myelitis. Ann. Neurol. 59, 566–569 (2006).

    Article  CAS  Google Scholar 

  15. Matiello, M. et al. NMO-IgG predicts the outcome of recurrent optic neuritis. Neurology 70, 2197–2200 (2008).

    Article  CAS  Google Scholar 

  16. McKeon, A. et al. Coexistence of myasthenia gravis and serological markers of neurological autoimmunity in neuromyelitis optica. Muscle Nerve 39, 87–90 (2009).

    Article  Google Scholar 

  17. Wandinger, K. P. et al. Autoantibodies against aquaporin-4 in patients with neuropsychiatric systemic lupus erythematosus and primary Sjögren's syndrome. Arthritis Rheum. 62, 1198–1200 (2010).

    Article  CAS  Google Scholar 

  18. Vitali, C. et al. Classification criteria for Sjögren's syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann. Rheum. Dis. 61, 554–558 (2002).

    Article  CAS  Google Scholar 

  19. Delalande, S. et al. Neurologic manifestations in primary Sjögren syndrome: a study of 82 patients. Medicine (Baltimore) 83, 280–291 (2004).

    Article  Google Scholar 

  20. Bertsias, G. K. et al. EULAR recommendations for the management of systemic lupus erythematosus with neuropsychiatric manifestations: report of a task force of the EULAR standing committee for clinical affairs. Ann. Rheum. Dis. 69, 2074–2082 (2010).

    Article  CAS  Google Scholar 

  21. Luyendijk, J. et al. Neuropsychiatric systemic lupus erythematosus: lessons learned from magnetic resonance imaging. Arthritis Rheum. 63, 722–732 (2011).

    Article  CAS  Google Scholar 

  22. Schulz, S. W. et al. Initial presentation of acute transverse myelitis in systemic lupus erythematosus: demographics, diagnosis, management and comparison to idiopathic cases. Rheumatol. Int. http://dx.doi.org/10.1007/s00296-011-2053-1.

  23. Heinlein, A. C. & Gertner, E. Marked inflammation in catastrophic longitudinal myelitis associated with systemic lupus erythematosus. Lupus 16, 823–826 (2007).

    Article  CAS  Google Scholar 

  24. Mornas, A. R., Thomas, T., Pallot, P. B., Chopin, F. & Raoux, D. Longitudinal myelitis in a patient with systemic lupus erythematosus. Joint Bone Spine 77, 181–183 (2010).

    Article  Google Scholar 

  25. Costabel, U. Sarcoidosis: clinical update. Eur. Respir. J. Suppl. 32, 56s–68s (2001).

    CAS  PubMed  Google Scholar 

  26. Stern, B. J., Krumholz, A., Johns, C., Scott, P. & Nissim, J. Sarcoidosis and its neurological manifestations. Arch. Neurol. 42, 909–917 (1985).

    Article  CAS  Google Scholar 

  27. Bolat, S., Berding, G., Dengler, R., Stangel, M. & Trebst, C. Fluorodeoxyglucose positron emission tomography (FDG-PET) is useful in the diagnosis of neurosarcoidosis. J. Neurol. Sci. 287, 257–259 (2009).

    Article  CAS  Google Scholar 

  28. Calamia, K. T. & Kaklamanis, P. G. Behçet's disease: recent advances in early diagnosis and effective treatment. Curr. Rheumatol. Rep. 10, 349–355 (2008).

    Article  CAS  Google Scholar 

  29. [No authors listed] Criteria for diagnosis of Behçet's disease. International Study Group for Behçet's Disease. Lancet 335, 1078–1080 (1990).

  30. Akman-Demir, G., Serdaroglu, P. & Tasci, B. Clinical patterns of neurological involvement in Behçet's disease: evaluation of 200 patients. The Neuro-Behçet Study Group. Brain 122, 2171–2182 (1999).

    Article  Google Scholar 

  31. Fukae, J. et al. Subacute longitudinal myelitis associated with Behçet's disease. Intern. Med. 49, 343–347 (2010).

    Article  Google Scholar 

  32. Yesilot, N. et al. Clinical characteristics and course of spinal cord involvement in Behçet's disease. Eur. J. Neurol. 14, 729–737 (2007).

    Article  CAS  Google Scholar 

  33. Tartaglino, L. M. et al. Multiple sclerosis in the spinal cord: MR appearance and correlation with clinical parameters. Radiology 195, 725–732 (1995).

    Article  CAS  Google Scholar 

  34. Qiu, W. et al. Longitudinally extensive myelopathy in Caucasians: a West Australian study of 26 cases from the Perth Demyelinating Diseases Database. J. Neurol. Neurosurg. Psychiatry 81, 209–212 (2010).

    Article  CAS  Google Scholar 

  35. Jarius, S. et al. Polyspecific, antiviral immune response distinguishes multiple sclerosis and neuromyelitis optica. J. Neurol. Neurosurg. Psychiatry 79, 1134–1136 (2008).

    Article  CAS  Google Scholar 

  36. Polman, C. H. et al. Diagnostic criteria for multiple sclerosis: revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011) (2010).

    Article  Google Scholar 

  37. Banwell, B. et al. Neuromyelitis optica-IgG in childhood inflammatory demyelinating CNS disorders. Neurology 70, 344–352 (2008).

    Article  CAS  Google Scholar 

  38. Young, N. P., Weinshenker, B. G. & Lucchinetti, C. F. Acute disseminated encephalomyelitis: current understanding and controversies. Semin. Neurol. 28, 84–94 (2008).

    Article  Google Scholar 

  39. Berger, J. R. & Sabet, A. Infectious myelopathies. Semin. Neurol. 22, 133–142 (2002).

    Article  Google Scholar 

  40. Sellner, J., Hemmer, B. & Muhlau, M. The clinical spectrum and immunobiology of parainfectious neuromyelitis optica (Devic) syndromes. J. Autoimmun. 34, 371–379 (2010).

    Article  CAS  Google Scholar 

  41. Umehara, F. et al. Abnormalities of spinal magnetic resonance images implicate clinical variability in human T-cell lymphotropic virus type I-associated myelopathy. J. Neurovirol. 13, 260–267 (2007).

    Article  Google Scholar 

  42. Delgado, S. R., Sheremata, W. A., Brown, A. D. & McCarthy, M. Human T-lymphotropic virus type I or II (HTLV-I/II) associated with recurrent longitudinally extensive transverse myelitis (LETM): two case reports. J. Neurovirol. 16, 249–253 (2010).

    Article  Google Scholar 

  43. Meurs, L., Labeye, D., Declercq, I., Pieret, F. & Gille, M. Acute transverse myelitis as a main manifestation of early stage II neuroborreliosis in two patients. Eur. Neurol. 52, 186–188 (2004).

    Article  Google Scholar 

  44. Chilver-Stainer, L., Fischer, U., Hauf, M., Fux, C. A. & Sturzenegger, M. Syphilitic myelitis: rare, nonspecific, but treatable. Neurology 72, 673–675 (2009).

    Article  CAS  Google Scholar 

  45. Kikuchi, S., Shinpo, K., Niino, M. & Tashiro, K. Subacute syphilitic meningomyelitis with characteristic spinal MRI findings. J. Neurol. 250, 106–107 (2003).

    Article  Google Scholar 

  46. Saleem, S., Belal, A. I. & el Ghandour, N. M. Spinal cord schistosomiasis: MR imaging appearance with surgical and pathologic correlation. AJNR Am. J. Neuroradiol. 26, 1646–1654 (2005).

    PubMed  Google Scholar 

  47. Seo, H. S. et al. Nonenhancing intramedullary astrocytomas and other MR imaging features: a retrospective study and systematic review. AJNR Am. J. Neuroradiol. 31, 498–503 (2010).

    Article  CAS  Google Scholar 

  48. Flanagan, E. P. et al. Paraneoplastic isolated myelopathy: clinical course and neuroimaging clues. Neurology 76, 2089–2095 (2011).

    Article  CAS  Google Scholar 

  49. Ducray, F. et al. Devic's syndrome-like phenotype associated with thymoma and anti-CV2/CRMP5 antibodies. J. Neurol. Neurosurg. Psychiatry 78, 325–327 (2007).

    Article  Google Scholar 

  50. Graus, F. et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J. Neurol. Neurosurg. Psychiatry 75, 1135–1140 (2004).

    Article  CAS  Google Scholar 

  51. Pittock, S. J. & Lucchinetti, C. F. Inflammatory transverse myelitis: evolving concepts. Curr. Opin. Neurol. 19, 362–368 (2006).

    Article  Google Scholar 

  52. Pittock, S. J. et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann. Neurol. 58, 96–107 (2005).

    Article  Google Scholar 

  53. Pittock, S. J. et al. Glutamic acid decarboxylase autoimmunity with brainstem, extrapyramidal, and spinal cord dysfunction. Mayo Clin. Proc. 81, 1207–1214 (2006).

    Article  CAS  Google Scholar 

  54. Titulaer, M. J. et al. Screening for tumours in paraneoplastic syndromes: report of an EFNS task force. Eur. J. Neurol. 18, 19-e3 (2011).

    Article  Google Scholar 

  55. Krampla, W. et al. Spinal cord lesions in patients with neuromyelitis optica: a retrospective long-term MRI follow-up study. Eur. Radiol. 19, 2535–2543 (2009).

    Article  Google Scholar 

  56. Mateen, F. J., Monrad, P. A., Hunderfund, A. N., Robertson, C. E. & Sorenson, E. J. Clinically suspected fibrocartilaginous embolism: clinical characteristics, treatments, and outcomes. Eur. J. Neurol. 18, 218–225 (2011).

    Article  CAS  Google Scholar 

  57. Krings, T., Mull, M., Gilsbach, J. M. & Thron, A. Spinal vascular malformations. Eur. Radiol. 15, 267–278 (2005).

    Article  Google Scholar 

  58. Mull, M. et al. Value and limitations of contrast-enhanced MR angiography in spinal arteriovenous malformations and dural arteriovenous fistulas. AJNR Am. J. Neuroradiol. 28, 1249–1258 (2007).

    Article  CAS  Google Scholar 

  59. Misra, U. K., Kalita, J. & Das, A. Vitamin B12 deficiency neurological syndromes: a clinical, MRI and electrodiagnostic study. Electromyogr. Clin. Neurophysiol. 43, 57–64 (2003).

    CAS  PubMed  Google Scholar 

  60. Goodman, B. P., Chong, B. W., Patel, A. C., Fletcher, G. P. & Smith, B. E. Copper deficiency myeloneuropathy resembling B12 deficiency: partial resolution of MR imaging findings with copper supplementation. AJNR Am. J. Neuroradiol. 27, 2112–2114 (2006).

    CAS  PubMed  Google Scholar 

  61. Jaiser, S. R. & Winston, G. P. Copper deficiency myelopathy. J. Neurol. 257, 869–881 (2010).

    Article  CAS  Google Scholar 

  62. McKeon, A. et al. Diagnosis of neuromyelitis spectrum disorders: comparative sensitivities and specificities of immunohistochemical and immunoprecipitation assays. Arch. Neurol. 66, 1134–1138 (2009).

    PubMed  Google Scholar 

  63. Wang, K. C., Wang, S. J., Lee, C. L., Chen, S. Y. & Tsai, C. P. The rescue effect of plasma exchange for neuromyelitis optica. J. Clin. Neurosci. 18, 43–46 (2011).

    Article  CAS  Google Scholar 

  64. Sellner, J. et al. EFNS guidelines on diagnosis and management of neuromyelitis optica. Eur. J. Neurol. 17, 1019–1032 (2010).

    Article  CAS  Google Scholar 

  65. Trebst, C. et al. Diagnosis and treatment of neuromyelitis optica: consensus recommendations of the Neuromyelitis Optica Study Group. Nervenarzt 82, 768–777 (2011).

    Article  CAS  Google Scholar 

  66. Taylor, J. K. & McMurray, R. V. Medical therapy for systemic lupus erythematosus. J. Miss. State Med. Assoc. 52, 39–43 (2011).

    PubMed  Google Scholar 

  67. Jounieaux, F. et al. Infliximab treatment for chronic sarcoidosis—a case series. Rev. Mal. Respir. 27, 685–692 (2010).

    Article  CAS  Google Scholar 

  68. Vargas, D. L. & Stern, B. J. Neurosarcoidosis: diagnosis and management. Semin. Respir. Crit. Care Med. 31, 419–427 (2010).

    Article  Google Scholar 

  69. Chintamaneni, S., Patel, A. M., Pegram, S. B., Patel, H. & Roppelt, H. Dramatic response to infliximab in refractory neurosarcoidosis. Ann. Indian Acad. Neurol. 13, 207–210 (2010).

    Article  Google Scholar 

  70. Kikuchi, H., Aramaki, K. & Hirohata, S. Effect of infliximab in progressive neuro-Behçet's syndrome. J. Neurol. Sci. 272, 99–105 (2008).

    Article  CAS  Google Scholar 

  71. Wiendl, H. et al. Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J. Neurol. 255, 1449–1463 (2008).

    Article  CAS  Google Scholar 

  72. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  Google Scholar 

  73. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  Google Scholar 

  74. Bernaerts, A. et al. Tuberculosis of the central nervous system: overview of neuroradiological findings. Eur. Radiol. 13, 1876–1890 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Westphal for help with figure preparation. Written consent for publication was obtained from the patients described in the case studies or their responsible relatives.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article and made substantial contributions to discussions of the content. C. Trebst, P. Raab, E. V. Voss and M. Stangel wrote the article, and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Martin Stangel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trebst, C., Raab, P., Voss, E. et al. Longitudinal extensive transverse myelitis—it's not all neuromyelitis optica. Nat Rev Neurol 7, 688–698 (2011). https://doi.org/10.1038/nrneurol.2011.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing