Neuropediatrics 2000; 31(3): 128-136
DOI: 10.1055/s-2000-7496
Original Article

Georg Thieme Verlag Stuttgart · New York

MR Patterns of Hypoxic-Ischemic Brain Damage After Prenatal, Perinatal or Postnatal Asphyxia[*]

L. T. L. Sie1 , M. S. van der Knaap1 , J. Oosting 4 , L. S. de Vries5 , H. N. Lafeber 2 , J. Valk 3
  • 1 Department of Child Neurology, Free University Hospital, Amsterdam, The Netherlands
  • 2 Department of Neonatology, Free University Hospital, Amsterdam, The Netherlands
  • 3 Department of Diagnostic Radiology, Free University Hospital, Amsterdam, The Netherlands
  • 4 Department of Epidemiology and Biostatistics, Academic Medical Center, University of Amsterdam, The Netherlands
  • 5 Department of Neonatology, Wilhelmina Children's Hospital, University of Utrecht, The Netherlands
Further Information

Publication History

Publication Date:
31 December 2000 (online)

The relationship between MR patterns of brain damage and type or timing of perinatal hypoxia-ischemia was studied. MR images of 104 children with evidence of bilateral posthypoxic-ischemic brain damage and neonatal records were reviewed. Three different MR patterns were found. Periventricular leukomalacia occurred in 73 children, in 82 % after a history of subacute or chronic hypoxia-ischemia, in 71 % after preterm birth. Predominant lesions of basal ganglia and thalamus occurred in 21 children, in 95 % preceded by acute profound asphyxia, in 85 % after term birth. Multicystic encephalopathy occurred in 10 infants, in 70 % preceded by mild signs of hypoxia-ischemia, followed by an unexpectedly severe encephalopathy, in 60 % after term birth. Statistical analysis showed that the patterns of injury were primarily related to the type of hypoxia-ischemia. We conclude that the type of hypoxia-ischemia, rather than the postconceptional age at occurrence determines the pattern of brain injury.

1 Parts of this study have been presented at the “European Paediatric Neurology Society”, October 1997, Maastricht, The Netherlands.

References

  • 1 Aicardi J, Goutières F, Hodebourg de Verbois A. Multicystic encephalomalacia of infants and its relation to abnormal gestation and hydranencephaly.  J Neurol Sci. 1972;  15 357-373
  • 2 Azzarelli B, Meade P, Muller J. Hypoxic lesions in areas of primary myelination. A distinct pattern in cerebral palsy.  Child Brain. 1980;  7 132-145
  • 3 Azzarelli B, Caldemeyer K S, Philips J P, DeMyer W E. Hypoxic-ischemic encephalopathy in areas of primary myelination: a neuroimaging and PET study.  Pediatr Neurol. 1996;  14 108-116
  • 4 Baenziger O, Martin E, Steinlin M, Good M, Largo R, Burger R. et al . Early pattern recognition in severe perinatal asphyxia: a prospective MRI study.  Neuroradiology. 1993;  35 437-442
  • 5 Banker B Q, Larroche J-C. Periventricular leukomalacia of infancy: a form of neonatal anoxic encephalopathy.  Arch Neurol. 1962;  7 386-410
  • 6 Barkovich A J, Truwit C L. Brain damage from perinatal asphyxia: correlation of MR findings with gestational age.  Am J Neuroradiol. 1990;  11 1087-1096
  • 7 Barkovich A J. MR and CT evaluation of profound neonatal and infantile asphyxia.  Am J Neuroradiol. 1992;  13 959-972
  • 8 Barkovich A J, Sargent S K. Profound asphyxia in the premature infant: imaging findings.  Am J Neuroradiol. 1995;  16 1837-1846
  • 9 Barkovich A J, Westmark K, Partridge C, Sola A, Ferriero D M. Perinatal asphyxia: MR findings in the first 10 days.  Am J Neuroradiol. 1995;  16 427-438
  • 10 Barkovich A J. Normal development of the neonatal and infant brain, skull, and spine. Barkovich AJ Pediatric Neuroimaging. 2nd ed. Philadelphia, New York; Lippincott-Raven 1996: 9-55
  • 11 Brann A W, Myers R E. Central nervous system findings in the newborn monkey following severe in utero partial asphyxia.  Neurology. 1975;  25 327-338
  • 12 Byrne P, Welch R, Johnson M A, Darrah J, Piper M. Serial magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy.  J Pediatr. 1990;  117 694-700
  • 13 Carter B S, Haverkamp A D, Merenstein G B. The definition of acute perinatal asphyxia.  Clin Perinatol. 1993;  20 287-304
  • 14 Christophe C, Clercx A, Blum D, Hasaerts D, Segebarth C, Perlmutter N. Early MR detection of cortical and subcortical hypoxic-ischemic encephalopathy in full-term infants.  Pediatr Radiol. 1994;  24 581-584
  • 15 De Reuck J, Cattha A S, Richardson E P. Pathogenesis and evolution of leukomalacia in infancy.  Arch Neurol. 1972;  27 229-236
  • 16 De Reuck J L. Cerebral angioarchitecture and perinatal brain lesions in premature and full-term infants.  Acta Neurol Scand. 1984;  70 391-395
  • 17 De Vries L S, Dubowitz L MS, Pennock J M, Bydder G M. Extensive cystic leucomalacia: correlation of cranial ultrasound, magnetic resonance imaging and clinical findings in sequential studies.  Clin Radiol. 1989;  40 158-166
  • 18 De Vries L S, Eken P, Dubowitz L MS. The spectrum of leukomalacia using cranial ultrasound.  Behav Brain Res. 1992;  49 1-6
  • 19 Dixon (Ed) W J. BMDP Statistical Software Manual. Los Angeles; University of California Press 1990: 1047-1077
  • 20 Ferrer I, Navarro C. Multicystic encephalomalacia of infancy. Clinicopathological report of 7 cases.  J Neurol Sci. 1978;  38 179-189
  • 21 Frigieri G, Guidi B, Costa Zaccarelli S, Rossi C, Muratori G, Ferrari F. et al . Multicystic encephalomalacia in term infants.  Child Nerv Syst. 1996;  12 759-764
  • 22 Hill A, Melson G L, Clark H B, Volpe J J. Hemorrhagic periventricular leukomalacia: diagnosis by real time ultrasound and correlation with autopsy findings.  Pediatrics. 1982;  69 282-284
  • 23 Hill A, Martin D J, Daneman A, Fitz C R. Focal ischemic cerebral injury in the newborn: diagnosis by ultrasound and correlation with computed tomographic scan.  Pediatrics. 1983;  71 790-793
  • 24 Keeney S E, Adcock E W, McArdle C B. Prospective observations of 100 high-risk neonates by high-field (1. 5 Tesla) magnetic resonance imaging of the central nervous system II. Lesions associated with hypoxic-ischemic encephalopathy.  Pediatrics. 1991;  87 431-438
  • 25 Lee H S, Choi B H. Density and distribution of excitatory amino acid receptors in the developing human fetal brain - A quantitative autoradiographic study.  Exp Neurol. 1992;  118 284-290
  • 26 Martin E, Barkovich A J. Magnetic resonance imaging in perinatal asphyxia.  Arch Dis Child. 1995;  72 F62-F70
  • 27 McArdle C B, Richardson C J, Hayden C K, Nicholas D A, Amparo E G. Abnormalities of the neonatal brain: MR imaging. Part II. Hypoxic-ischemic brain injury.  Radiology. 1987;  163 395-403
  • 28 Murphy D J, Sellers S, MacKenzie I Z, Yudkin P L, Johnson A M. Case-control study of antenatal and intrapartum risk factors for cerebral palsy in very preterm singleton babies.  Lancet. 1995;  346 1449-1454
  • 29 Murphy D J, Squier M V, Hope P L, Sellers S, Johnson A M. Clinical associations and time of onset of cerebral white matter damage in very preterm babies.  Arch Dis Child. 1996;  75 F27-F32
  • 30 Myers R E, Beard R, Adamsons K. Brain swelling in the newborn rhesus monkey following prolonged partial asphyxia.  Neurology. 1969;  19 1012-1018
  • 31 Myers R E. Two patterns of perinatal brain damage and their conditions of occurrence.  Am J Obstet Gynecol. 1972;  112 246-276
  • 32 Myers R E. Four patterns of perinatal brain damage and their conditions of occurrence in primates.  Adv Neurol. 1975;  10 223-234
  • 33 Nelson M D, Gonzalez-Gomez I, Gilles F H. The search for human telencephalic ventriculofugal arteries.  Am J Neuroradiol. 1991;  12 215-222
  • 34 Okumura A, Hayakawa F, Kato T, Kuno K, Watanabe K. MRI findings in patients with spastic cerebral palsy. I: correlation with gestational age at birth.  Dev Med Child Neurol. 1997;  39 363-368
  • 35 Pasternak J F, Predey T A, Mikhael M A. Neonatal asphyxia: vulnerability of basal ganglia, thalamus and brainstem.  Pediatr Neurol. 1991;  7 147-149
  • 36 Pasternak J F. Hypoxic-ischemic brain damage in the term infant. Lessons from the laboratory.  Pediatr Clin North Am. 1993;  40 1061-1072
  • 37 Pasternak J F, Gorey M T. The syndrome of acute near-total intrauterine asphyxia in the term infant.  Pediatr Neurol. 1998;  18 391-398
  • 38 Rademakers R P, van der Knaap M S, Verbeeten B, Barth P G, Valk J. Central cortico-subcortical involvement: A distinct pattern of brain damage caused by perinatal and postnatal asphyxia in term infants.  J Comput Assist Tomogr. 1995;  2 256-263
  • 39 Roland E H, Poskitt K, Rodriguez E, Lupton B A, Hill A. Perinatal hypoxic-ischemic thalamic injury: clinical features and neuroimaging.  Ann Neurol. 1998;  44 161-166
  • 40 Rorke L B. Anatomical features of the developing brain implicated in pathogenesis of hypoxic-ischemic injury.  Brain Pathol. 1992;  2 211-221
  • 41 Rutherford M, Pennock J, Schwieso J E, Cowan F M, Dubowitz L MS. Hypoxic-ischemic encephalopathy: early magnetic resonance imaging findings and their evolution.  Neuropediatrics. 1995;  26 183-191
  • 42 Rutherford M, Pennock J, Schwieso J E, Cowan F M, Dubowitz L MS. Hypoxic-ischaemic encephalopathy: early and late magnetic resonance imaging findings in relation to outcome.  Arch Dis Child. 1996;  75 F145-F151
  • 43 Sarnat H B, Sarnat M S. Neonatal encephalopathy following fetal distress.  Arch Neurol. 1976;  33 696-705
  • 44 Schmitt H P. Multicystic encephalopathy - a polyetiologic condition in early infancy: morphologic, pathogenetic and clinical aspects.  Brain Dev. 1984;  6 1-9
  • 45 Sie L TL, Van der Knaap M S, Van Wezel-Meijler G, Valk J. MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants.  Neuropediatrics. 1997;  28 97-105
  • 46 Smith J F, Rodeck C. Multiple cystic and focal encephalomalacia in infancy and childhood with brain stem damage.  J Neurol Sci. 1975;  25 377-388
  • 47 Sobel D F, Gallen C C, Schwartz B J, Waltz T A, Copeland B, Yamada S. et al . Locating the central sulcus: comparison of MR, anatomic and magnetoencephalographic functional methods.  Am J Neuroradiol. 1993;  14 915-925
  • 48 Steinlin M, Dirr R, Martin E, Boesch C, Largo R H, Fanconi S. et al . MRI following severe perinatal asphyxia: preliminary experience.  Pediatr Neurol. 1997;  7 164-170
  • 49 Takashima S, Armstrong D L, Becker L E. Subcortical leukomalacia. Relationship to development of the cerebral sulcus and its vascular supply.  Arch Neurol. 1978;  35 470-472
  • 50 Trounce J Q, Levene M I. Diagnosis and outcome of subcortical cystic leucomalacia.  Arch Dis Child. 1985;  60 1041-1044
  • 51 Usher R, McLean F. Intrauterine growth of live-born caucasian infants at sea level: standards obtained from measurements in 7 dimensions of infants born between 25 and 44 weeks of gestation.  J Pediatr. 1969;  74 901-910
  • 52 Valk J, van der Knaap M S, de Grauw T, Taets van Amerongen A HM. The role of imaging modalities in the diagnosis of posthypoxic-ischemic and hemorrhagic conditions of infants (Part I of two).  Klin Neuroradiol. 1991;  1 72-79
  • 53 Van Wezel-Meijler G, Hummel T Z, Oosting J, de Groot L, Sie L TL, Huisman J. et al . Unilateral thalamic lesions in premature infants: risk factors and short-term prognosis.  Neuropediatrics. 1999;  30 300-306
  • 54 Voit T, Lemburg P, Neuen E, Lumenta C, Stork W. Damage of thalamus and basal ganglia in asphyxiated full-term neonates.  Neuropediatrics. 1987;  18 176-181
  • 55 Volpe J J. Hypoxic-ischemic encephalopathy: neuropathology and pathogenesis. Volpe JJ Neurology of the Newborn. 3rd ed. Philadelphia; Saunders 1995: 279-313
  • 56 Weidenheim K M, Bodhireddy S R, Nuovo G J, Nelson S J, Dickson D W. Multicystic encephalopathy: Review of eight cases with etiologic considerations.  J Neuropathol Exp Neurol. 1995;  54 268-275
  • 57 Yokochi K. Thalamic lesions revealed by MR associated with periventricular leukomalacia and clinical profiles of subjects.  Acta Paediatr. 1997;  86 493-496

1 Parts of this study have been presented at the “European Paediatric Neurology Society”, October 1997, Maastricht, The Netherlands.

Prof. Dr. M. S. van der Knaap

Department of Child Neurology Free University Hospital

De Boelelaan 1117

1081 HV Amsterdam

The Netherlands

Email: E-mail: ms.vanderknaap@azvu.nl

    >