Rofo 2002; 174(1): 33-42
DOI: 10.1055/s-2002-19541
Neuroradiologie
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

1H-MR-Spektroskopie von Hirntumoren im Verlauf der Strahlentherapie: Anwendung von schneller spektroskopischer Bildgebung und Einzelvolumen-MRS in der Rezidivdiagnostik

1H-MR Spectroscopy of brain tumors in the course of radiation therapy:
Use of fast spectroscopic imaging and single-voxel spectroscopy for diagnosing recurrence
F.  Träber1 , W.  Block1 , S.  Flacke1 , R.  Lamerichs2 , H.  Schüller1 , H.  Urbach1 , E.  Keller1 , H.  H.  Schild1
  • 1Radiologische Klinik der Universität Bonn
  • 2Philips Medical Systems, Best, Niederlande
Further Information

Publication History

Publication Date:
15 January 2002 (online)

Zusammenfassung

Ziel: Verbesserung der Unterscheidung zwischen Tumorrezidiv und Gewebenekrose in der Verlaufskontrolle operierter Hirntumoren unter Radiatio durch Einsatz schneller 1H-MR-spektroskopischer Bildgebung (TSI) in Kombination mit Einzelvolumen-Spektroskopie (SVS). Methoden: An 54 Patienten mit malignem primären Hirntumor (44 Glioblastome, 10 andere hochgradige Gliome) wurden postoperativ insgesamt 140 1H-MRS-Untersuchungen im Verlauf einer Strahlentherapie durchgeführt. Mit der TSI-Sequenz wurden Einzel- oder Doppelschichten mit 32 · 32-Bildmatrix in 11 bzw. 15 min akquiriert. Aus der SVS mit TR/TE 2000/272 ms wurden relative und bei 15 Patienten auch die Zeitverläufe der absoluten Metabolitenkonzentrationen ermittelt. Ergebnisse: Von den 44 Patienten, bei denen über den Gesamtverlauf der Radiatio MRS-Resultate erhalten werden konnten, zeigten 23 nach Bestrahlung eine mit TSI lokalisierte persistierende oder neu auftretende Cholin-Akkumulation als Indikator für Rest- bzw. Rezidivtumor. In allen diesen Fällen wurde die MRS-Diagnose kurzfristig durch Histologie oder weiteren Verlauf bestätigt. Allerdings entwickelten 6 von 15 Patienten mit im TSI unauffälliger Cholinverteilung innerhalb von drei Monaten ebenfalls ein Rezidiv. Vorteile der SVS bestanden in früher Rezidiverkennung anhand der zeitlichen Entwicklung der Metabolitenkonzentrationen. Schlussfolgerungen: Schnelle spektroskopische Bildgebung und Einzelvolumen-1H-MRS stellen sich ergänzende Modalitäten in der Therapieverlaufskontrolle bei operierten Hirntumoren dar und können bei Nachweis einer fokalen Cholin-Akkumulation ein Rezidiv zuverlässig und frühzeitig diagnostizieren.

Summary

Purpose: To improve differential diagnosis of residual or recurrent tumor vs. tissue necrosis in the course of radiation therapy of neurosurgically-treated brain tumors by application of fast 1H-MR spectroscopic imaging in combination with single-voxel spectroscopy (SVS). Methods: 54 patients after with malignant brain tumor (44 cases of glioblastoma, 10 other high-grade gliomas) were examined post-surgically in a total of 140 proton MRS examinations in the course of radiotherapy and in follow-up controls. Fast SI acquisition was performed as single-slice or double-slice TSI sequence with 32 × 32 phase encodings within 11 or 15 minutes, respectively. SVS with TR/TE 2000/272 ms yielded relative metabolite ratios, and in 15 patients the time courses of the absolute cocentrations of brain metabolites were also determined. Results: In the group of 44 patients that could be tracked by MRS until therapy completion, TSI localized in 23 patients a persistent or newly arisen distinct choline accumulation indicating residual or reccurent tumor after radiation therapy. In all these cases MRS diagnosis was confirmed histologically or by short-term follow-up. However, in 6 of 15 patients showing a normal choline pattern in the TSI acquisition, tumor recurrence appeared within three months. SVS provided early recognition of recurrent tumor when detecting characteristic alterations of metabolite concentrations oin therapy follow-up. Conclusion: TSI and SVS represent complementary MRS techniques fand are able to diagnose tumor recurrence early and unambiguously in cases where focal choline accumulation is detected.

Literatur

  • 1 Duyn J H, Moonen C T. Fast proton spectroscopic imaging of human brain using multiple spin-echoes.  Magn Reson Med. 1993;  30 409-414
  • 2 Duyn J H, Frank J A, Moonen C T. Incorporation of lactate measurement in multi-spin-echo proton spectroscopic imaging.  Magn Reson Med. 1995;  33 101-107
  • 3 Norris D G, Dreher W. Fast proton spectroscopic imaging using the sliced k-space method.  Magn Reson Med. 1993;  30 641-645
  • 4 Posse S, Tedeschi G, Risinger R, Ogg R, Le Bihan D. High speed 1H spectroscopic imaging in human brain by echo planar spatial-spectral encoding.  Magn Reson Med. 1995;  33 34-40
  • 5 Adalsteinsson E, Irarrazabal P, Topp S, Meyer C, Macovski A, Spielman D M. Volumetric spectroscopic imaging with spiral-based k-space trajectories.  Magn Reson Med. 1998;  39 889-898
  • 6 Flacke S, Träber F, Block W, Lamerichs R, Schüller H, Schild H H. Improved Diagnosis of Contrast-Enhancing Brain Lesions with Multifunctional MRI Assessment: A Case Report.  JMRI. 1999;  9 741-744
  • 7 Helms G. Analysis of 1,5 Tesla proton MR spectra of human brain using LCModel and an imported basis set.  Magn Reson Imaging. 1999;  17 1211-1218
  • 8 Nelson S J. Imaging of brain tumors after therapy.  Neuroimaging Clin N Am. 1999;  9 801-819
  • 9 Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn J H, Alger J R, Di Chiro G. Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study.  J Neurosurg. 1997;  87 516-524
  • 10 Wald L L, Nelson S J, Day M R, Noworolski S E, Henry R G, Huhn S L, Chang S, Prados M D, Sneed P L, Larson D A, Wara W M, McDermott M, Dillon W P, Gutin P H, Vigneron D B. Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy.  J Neurosurg. 1997;  87 525-534
  • 11 Graves E E, Nelson S J, Vigneron D B, Verhey L, McDermott M, Larson D, Chang S, Prados M D, Dillon W P. Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery.  Am J Neuroradiol. 2001;  22 613-624
  • 12 Träber F, Lamerichs R, Block W, Keller E, Schild H H. 1H-MR Turbo Spectroscopic Imaging (TSI) of the Brain: Performance in Clinical Examples and Comparison to Conventional MRSI. Vancouver; Proc. 5th Scient Meeting ISMRM 1997: 1241
  • 13 Träber F, Lamerichs R, Block W, Keller E, Schild H H. Messzeitverkürzung durch 1H-MR-turbo-spektroskopische Bildgebung des Gehirns.  Fortschr Röntgenstr. 1997;  166 221-229
  • 14 Duyn J H, Gillen J, Sobering G, van Zijl P C, Moonen C T. Multisection proton MR spectroscopic imaging of the brain.  Radiology. 1993;  188 277-282
  • 15 Moonen C T, van Zijl P C. Highly effective water suppression for in vivo proton NMR spectroscopy (DRYSTEAM).  J Magn Reson. 1990;  88 28-41
  • 16 Bottomley P A. Spatial localization in NMR spectroscopy.  Ann NY Acad Sci. 1987;  508 333-348
  • 17 Shen J F, Saunders J K. Double inversion recovery improves water suppression in vivo.  Magn Reson Med. 1993;  29 540-542
  • 18 Block W, Träber F, Kuhl C K, Fric M, Keller E, Lamerichs R, Rink H, Möller H J, Schild H H. 1H-MR spektroskopische Bildgebung bei Patienten mit klinisch gesichertem Morbus Alzheimer.  Fortschr Röntgenstr. 1995;  163 230-237
  • 19 Gredal O, Rosenbaum S, Topp S, Karlsborg M S, Werdelin L. Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy.  Neurology. 1997;  48 878-881
  • 20 Christiansen P, Hendriksen O, Stubgaard M, Gideon P, Larsson H BW. In vivo quantification of brain metabolites by 1H-MRS using water as an ianternal standard.  Magn Reson Imaging. 1993;  11 107-118
  • 21 Esteve F, Rubin C, Grand S, Kolodie H, Le-Bas J F. Transient metabolic changes observed with proton MR spectroscopy in normal human brain after radiation therapy.  Int J Radiat Oncol Biol Phys. 1998;  40 279-286
  • 22 Waldrop S M, Davis P C, Padgett C A, Shapiro M B, Morris R. Treatment of brain tumors in children is associated with abnormal MR spectroscopic ratios in brain tissue remote from the tumor site.  Am J Neuroradiol. 1998;  19 963-970
  • 23 Meyerand M E, Pipas J M, Mamourian A, Tosteson T D, Dunn J F. Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy.  Am J Neuroradiol. 1999;  20 117-123
  • 24 Poptani H, Kaartinen J, Gupta R K, Niemitz M, Hiltunen Y, Kauppinen R A. Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks.  J Cancer Res Clin Oncol. 1999;  125 343-349
  • 25 Roser W, Hagberg G, Mader I, Dellas S, Selig J, Radue E W, Steinbrich W. Assignment of glial brain tumors in humans by in vivo 1H-magnetic resonance spectroscopy and multidimensional metabolic classification.  MAGMA. 1997;  5 179-183
  • 26 Tien R D, Lai P H, Smith J S, Lazeyras F. Single-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumors.  Am J Roentgenol. 1996;  167 201-209
  • 27 Fulhalm M J, Bizzi A, Dietz M J, Shih H H, Raman R, Sobering G S, Frank J A, Dwyer A J, Alger J R, Di Chiro G. Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance.  Radiology. 1992;  185 675-686
  • 28 Lazareff J A, Bockhorst K H, Curran J, Olmstead C, Alger J R. Pediatric low-grade gliomas: prognosis with proton magnetic resonance spectroscopic imaging.  Neurosurgery. 1998;  43 809-817
  • 29 Preul M C, Caramanos Z, Leblanc R, Vollemeire J C, Arnold D L. Using Pattern Analysis of In-Vivo Proton MRSI Data to Improve the Diagnosis and Surgical Management of Patients with Brain Tumors.  NMR Biomed. 1998;  11 192-200
  • 30 Warren K E, Frank J A, Black J L, Hill R S, Duyn J H, Aikin A A, Lewis B K, Adamson P C, Balis F M. Proton magnetic resonance spectroscopic imaging in children with recurrent brain tumors.  J Clin Oncol. 2000;  18 1020-1026
  • 31 Herholz K, Heindel W, Luyten P R, denHollander J A, Pietrzyk U, Voges J, Kugel H, Friedmann G, Heiss W D. In vivo imaging of glucose consumption and lactate concentration in human gliomas.  Ann Neurol. 1992;  31 319-327
  • 32 Dowling C, Bollen A W, Noworolski S M, McDermott M W, Barbaro N M, Day M R, Henry R G, Chang S M, Dillon W P, Nelson S J, Vigneron D B. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens.  Am J Neuroradiol. 2001;  22 604-612
  • 33 Henry R G, Vigneron D B, Fischbein N J, Grant P E, Day M R, Noworolski S M, Star-Lack J M, Wald L L, Dillon W P, Chang S M, Nelson S J. Comparison of relative cerebral blood volume and proton spectroscopy in patients with treated gliomas.  Am J Neuroradiol. 2000;  21 357-366
  • 34 Nelson S J, Huhn S, Vigneron D B, Day M R, Wald L L, Prados M, Chang S, Gutin P H, Sneed P K, Verhey L, Hawkins R A, Dillon W P. Volume MRI and MRSI techniques for the quantitation of treatment response in brain tumors: presentation of a detailed case study.  JMRI. 1997;  7 1146-1152
  • 35 Heiland S, Hartmann M, Sartor K. Perfusions-MRT bei gestörter Blut-Hirn-Schranke: Fehlerquellen und Lösungsansätze.  Fortschr Röntgenstr. 2000;  172 812-816

Dr. rer. nat. Frank Träber

Radiologische Universitätsklinik

Sigmund-Freud-Straße 25

53127 Bonn

Phone: + 49-228-287-6651

Fax: + 49-228-287-5598

Email: traeber@uni-bonn.de

    >