Skip to main content

Advertisement

Log in

The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: A review

  • Review Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum regulates execution of skilled movements through neural connections with the primary motor cortex. A main projection from the cerebellum to the primary motor cortex is a disynaptic excitatory pathway relayed at the ventral thalamus. This dentatothalamocortical pathway receives inhibitory inputs from Purkinje cells of the cerebellar cortex. These pathways (cerebellothalamocortical pathways) have been characterized extensively using cellular approaches in animals. Advances in non-invasive transcranial activation of neural structures using electrical and magnetic stimulation have allowed us to investigate these neural connections in humans. This review summarizes various studies of the cerebellothalamo-cortical pathway in humans using current transcranial electrical and magnetic stimulation techniques. We studied effects on motor cortical excitability elicited by electrical or magnetic stimulation over the cerebellum by recording surface electromyographic (EMG) responses from the first dorsal interosseous (FDI) muscle. Magnetic stimuli were given with a round or figure eight coil (test stimulation) for primary motor cortical activation. For cerebellar stimulation, we gave high-voltage electrical stimuli or magnetic stimuli through a cone-shaped coil ipsilateral to the surface EMG recording (conditioning stimulation). We examined effects of interstimulus intervals (ISIs) with randomized condition-test paradigm, using a test stimulus given preceded by a conditioning stimulus by ISIs of several milliseconds. We demonstrated significant gain of EMG responses at an ISI of 3 ms (facilitatory effect) and reduced responses starting at 5 ms, which lasted 3–7 ms (inhibitory effect). We applied this method to patients with ataxia and showed that the inhibitory effect was only absent in patients with a lesion at cerebellar efferent pathways or dentatothalamocortical pathway. These results imply that this method activates the unilateral cerebellar structures. We confirmed facilitatory and inhibitory natures of cerebellothala-mocortical pathways in humans. We can differentiate ataxia attributable to somewhere in the cerebello-thalamo-cortical pathways from that caused by other pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54:957–1006.

    PubMed  CAS  Google Scholar 

  2. Hoover JE, Strick PL. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. JNeurosci. 1999;19:1446–63.

    CAS  Google Scholar 

  3. Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84:585–90.

    PubMed  CAS  Google Scholar 

  4. Jörntell H, Ekerot C, Garwicz M, Luo XL. Functional organization of climbing fibre projection to the cerebellar anterior lobe of the rat. J Physiol. 2000;522(Pt 2):297–309.

    Article  PubMed  Google Scholar 

  5. Na J, Kakei S, Shinoda Y. Cerebellar input to corticothalamic neurons in layers V and VI in the motor cortex. Neurosci Res. 1997;28:77–91.

    Article  PubMed  CAS  Google Scholar 

  6. Sasaki K, Kawaguchi S, Oka H, Sakai M, Mizuno N. Electrophysiological studies on the cerebellocerebral projections in monkeys. Exp Brain Res. 1976;24:495–507.

    Article  PubMed  CAS  Google Scholar 

  7. Shinoda Y, Kakei S, Futami T, Wannier T. Thalamocortical organization in the cerebello-thalamo-cortical system. Cereb Cortex. 1993;3:421–9.

    Article  PubMed  CAS  Google Scholar 

  8. Steriade M. Two channels in the cerebellothalamocortical system. J Comp Neurol. 1995;354:57–70.

    Article  PubMed  CAS  Google Scholar 

  9. Barker AT, Freeston IL, Jabinous R, Jarratt JA. Clinical evaluation of conduction time measurements in central motor pathways using magnetic stimulation of human brain. Lancet. 1986;1(8493):1325–6.

    Article  PubMed  CAS  Google Scholar 

  10. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans. Ann Neurol. 1994;36:618–24.

    Article  PubMed  CAS  Google Scholar 

  11. George MS, Wassermann EM, Post RM. Transcranial magnetic stimulation: A neuropsychiatric tool for the 21st century. J Neuropsychiatry Clin Neurosci. 1996;8:373–82.

    PubMed  CAS  Google Scholar 

  12. Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD. Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol. 1991;441:57–72.

    PubMed  CAS  Google Scholar 

  13. Ugawa Y, Rothwell JC, Day BL, Thompson PD, Marsden CD. Percutaneous electrical stimulation of corticospinal pathways at the level of the pyramidal decussation in humans. Ann Neurol. 1991;29:418–27.

    Article  PubMed  CAS  Google Scholar 

  14. Day BL, Dressler D, Maertens de Noordhout A, et al. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol. 1989;412:449–73.

    PubMed  CAS  Google Scholar 

  15. Day BL, Thompson PD, Dick JP, Nakashima K, Marsden CD. Different sites of action of electrical and magnetic stimulation of the human brain. Neurosci Lett. 1987;75:101–6.

    Article  PubMed  CAS  Google Scholar 

  16. Amassian VE, Stewart M, Quirk GJ, Rosenthal JL. Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery. 1987;20:74–93.

    PubMed  CAS  Google Scholar 

  17. Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Kanazawa I. Preferential activation of different I waves by transcranial magnetic stimulation with a figure-eight-shaped coil. Exp Brain Res. 1997;113:24–32.

    Article  PubMed  CAS  Google Scholar 

  18. Ugawa Y, Iwata NK. Cerebellar stimulation in normal subjects and ataxic patients. In: Hallett M, Chokroverty S, editors. Magnetic stimulation in clinical neurophysiology, 2nd edn. Amsterdam: Elsevier BV; 2005. pp 197–210.

    Google Scholar 

  19. Amassian VE, Stewart M. Motor cortical and other cortical interneuronal networks that generate very high frequency waves. Suppl Clin Neurophysiol. 2003;56:119–42.

    Article  PubMed  Google Scholar 

  20. Hanajima R, Ugawa Y, Terao Y, et al. Paired-pulse magnetic stimulation of the motor cortex: Difference among I waves. J Physiol. 1998;509:607–18.

    Article  PubMed  CAS  Google Scholar 

  21. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37:703–13.

    Article  PubMed  CAS  Google Scholar 

  22. Iwata NK, Hanajima R, Furubayashi T, et al. Facilitatory effect on the motor cortex by electrical stimulation over the cerebellum in humans. Exp Brain Res. 2004;159:418–24.

    Article  PubMed  Google Scholar 

  23. Ugawa Y, Hanajima R, Kanazawa I. Interhemispheric facilitation of the hand area of the human motor cortex. Neurosci Lett. 1993;160:153–5.

    Article  PubMed  CAS  Google Scholar 

  24. Hanajima R, Ugawa Y, Machii K, et al. Interhemispheric facilitation of the hand motor area in humans. J Physiol. 2001;531(Pt 3):849–59.

    Article  PubMed  CAS  Google Scholar 

  25. Ugawa Y, Genba-Shimizu K, Rothwell JC, Iwata M, Kanazawa I. Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia. Ann Neurol. 1994;36:90–6.

    Article  PubMed  CAS  Google Scholar 

  26. Ugawa Y, Terao Y, Hanajima R, et al. Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol. 1997;104:453–8.

    Article  PubMed  CAS  Google Scholar 

  27. Sakai K, Kojima E, Suzuki M, et al. Primary motor cortex isolation: Complete paralysis with preserved primary motor cortex. J Neurol Sci. 1998;155:115–9.

    Article  PubMed  CAS  Google Scholar 

  28. Ugawa Y, Terao Y, Nagai C, Nakamura K, Kanazawa I. Electrical stimulation of the cerebellum normally suppresses motor cortical excitability in a patient with ataxia due to a lesion of the middle cerebellar peduncle. Eur Neurol. 1995;35:243–4.

    Article  PubMed  CAS  Google Scholar 

  29. Di Lazzaro V, Molinari M, Restuccia D, et al. Cerebrocerebellar interactions in man: neurophysiological studies in patients with focal cerebellar lesions. Electroencephalogr Clin Neurophysiol. 1994;93:27–34.

    Article  PubMed  Google Scholar 

  30. Matsunaga K, Uozumi T, Hashimoto T, Tsuji S. Cerebellar stimulation in acute cerebellar ataxia. Clin Neurophysiol. 2001;112:619–22.

    Article  PubMed  CAS  Google Scholar 

  31. Ugawa Y, Genba-Shimizu K, Kanazawa I. Suppression of motor cortical excitability by electrical stimulation over the cerebellum in Fisher’s syndrome. J Neurol Neurosurg Psychiatry. 1994;57:1275–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Ugawa MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwata, N.K., Ugawa, Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: A review. Cerebellum 4, 218–223 (2005). https://doi.org/10.1080/14734220500277007

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220500277007

Key words

Navigation