Paper
19 March 2014 Experimental and theoretical performance analysis for a CMOS-based high resolution image detector
Author Affiliations +
Abstract
Increasing complexity of endovascular interventional procedures requires superior x-ray imaging quality. Present stateof- the-art x-ray imaging detectors may not be adequate due to their inherent noise and resolution limitations. With recent developments, CMOS based detectors are presenting an option to fulfill the need for better image quality. For this work, a new CMOS detector has been analyzed experimentally and theoretically in terms of sensitivity, MTF and DQE. The detector (Dexela Model 1207, Perkin-Elmer Co., London, UK) features 14-bit image acquisition, a CsI phosphor, 75 μm pixels and an active area of 12 cm x 7 cm with over 30 fps frame rate. This detector has two modes of operations with two different full-well capacities: high and low sensitivity. The sensitivity and instrumentation noise equivalent exposure (INEE) were calculated for both modes. The detector modulation-transfer function (MTF), noise-power spectra (NPS) and detective quantum efficiency (DQE) were measured using an RQA5 spectrum. For the theoretical performance evaluation, a linear cascade model with an added aliasing stage was used. The detector showed excellent linearity in both modes. The sensitivity and the INEE of the detector were found to be 31.55 DN/μR and 0.55 μR in high sensitivity mode, while they were 9.87 DN/μR and 2.77 μR in low sensitivity mode. The theoretical and experimental values for the MTF and DQE showed close agreement with good DQE even at fluoroscopic exposure levels. In summary, the Dexela detector’s imaging performance in terms of sensitivity, linear system metrics, and INEE demonstrates that it can overcome the noise and resolution limitations of present state-of-the-art x-ray detectors.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Amit Jain, Daniel R. Bednarek, and Stephen Rudin "Experimental and theoretical performance analysis for a CMOS-based high resolution image detector", Proc. SPIE 9033, Medical Imaging 2014: Physics of Medical Imaging, 90333P (19 March 2014); https://doi.org/10.1117/12.2043053
Lens.org Logo
CITATIONS
Cited by 14 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Modulation transfer functions

CMOS sensors

Image resolution

Image sensors

X-ray imaging

Electrons

Back to Top