Skip to main content
Log in

Neurocognitive aging and cardiovascular fitness

Recent findings and future directions

  • Prevention
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In the first century, ce, the Roman satirist Juneval famously observed Orandum est, ut sit mens sana in corpore sano, or “A sound mind in a sound body is something to be prayed for.” This implicit link between mental and physical health, also paralleled by Eastern philosophies and practices such as tai chi, has survived the millennia since Juneval and his contemporaries. More recently, controlled examinations of the effects of physical fitness on cognitive performance have shown that improving cardiovascular fitness (CVF) can help to reduce the deleterious effects of age on cognition and brain structure. Thus, as we age, it may well be the case that a sound mind is a natural concomitant of a sound body. Numerous cross-sectional and longitudinal studies have examined the effects of aerobic exercise on cognitive performance in aging humans since earlier studies, which found that physically fit older adults performed better on simple cognitive tasks than their less-fit counterparts. This base of knowledge recently has been furthered through examinations of cortical structure (Colcombe et al., 2003) and neurocognitive function in aging humans via functional and structural magnetic resonance imaging techniques. In this manuscript, we will briefly review some of our recent research on the effects of CVF on brain function, structure, and behavior in older adults. We will then outline some of our current and future directions in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barcelo F., Suwanzono S., and Knight R. T. (2000) Prefrontal modulation of visual processing in humans. Nat. Neurosci. 3(4), 399–403.

    Article  PubMed  CAS  Google Scholar 

  • Baron A. and Mattila W. R. (1989) Response slowing of older adults: effects of time-contingencies on single and dual-task performances. Psychol. Aging 4, 66–72.

    Article  PubMed  CAS  Google Scholar 

  • Berchtold N. C., Kesslak J. P., Pike C. J., Aldard P. A., and Cotman C. W. (2001) Estrogen and exercise interact to regulate brain derived neurotrophin factor mRNA transcription and protein expression in the rat hippocampus. Eur. J. Neurosci. 14(12), 1992–2002.

    Article  PubMed  CAS  Google Scholar 

  • Botvinick M., Nystrom L. E., Fissel K., Carter C., and Cohen J. D. (1999) Conflict monitoring versus selection-foraction in anterior cingulate cortex. Nature, 402, 179–181.

    Article  PubMed  CAS  Google Scholar 

  • Blomstrand E., Perrett D., Parry-Billings M., and Newsholme E. A. (1989) Effect of sustained exercise on plasma amino acid concentrations and on 5-hydroxytryptamine metabolism in six different brain regions in the rat. Acta Physiol. Scand. 136(3), 473–481.

    Article  PubMed  CAS  Google Scholar 

  • Cabeza, R. (2002) Hemispheric asymmetry reduction in old adults: The HAROLD model. Psychol. and Aging, 17, 85–100.

    Article  Google Scholar 

  • Cameron H. A. and McKay R. D. (1999) Restoring production of hippocampal neurons in old age. Nat. Neurosci. 2(10), 894–897.

    Article  PubMed  CAS  Google Scholar 

  • Carro E., Trejo L. J., Busiguina S., and Torres Aleman I. (2001) Circulating insulin-like growth factor 1 mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J. Neurosci. 21, 5678–5684.

    PubMed  CAS  Google Scholar 

  • Colcombe S. J. and Kramer A. F. (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14(2), 125–130.

    Article  PubMed  Google Scholar 

  • Colcombe S. J., Erickson K., I., Raz N., Webb A. G., Cohen N. J., McAuley E., and Kramer A. F. (2003) Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. A. Biol. Sci. Med. Sci. 53(2), 176–180.

    Google Scholar 

  • Colcombe S. J., Kramer A. F., Erickson K. I., Scalf P., McAuley E., Cohen N. J., et al. (2004) Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. USA 101, 3316–3321.

    Article  PubMed  CAS  Google Scholar 

  • Cotman C. W. and Berchtold N. C. (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Etnier J. R., Salazar W., Landers D. M., Petruzzello S. J., Han M. and Nowell P. (1997) The influence of physical fitness and exercise upon cognitive functioning: a meta-analysis. J. Sport Exercise Psychol. 19, 249–277.

    Google Scholar 

  • Godfrey R. J., Madgwick Z., and Whyte G. P. (2003) The exercise-induced growth hormone response in athletes. Sports Med. 33(8), 599–613.

    Article  PubMed  Google Scholar 

  • Kramer A. F., Hahn S., Cohen N. J., Banich M. T., McAuley E., Harrison C. R., et al. (1999a) Ageing, fitness and neurocognitive function. Nature 400, 418–419.

    Article  PubMed  CAS  Google Scholar 

  • Kramer A. F., Hahn S., and Gopher D. (1999b) Task coordination and aging: explorations of executive control processes in the task-switching paradigm. Acta Psychol. 101, 339–378.

    Article  CAS  Google Scholar 

  • Kramer A. F., Larish J., Weber T., and Bardell L. (1999c) Training for executive control: task coordination strategies and aging. In Gopher D. and Koriat A., eds., Atten. Perform. XVII. MIT Press, Cambridge, MA.

    Google Scholar 

  • Kramer A., Humphrey D., Larish J., Logan G., and Strayer D. (1994) Aging and inhibition: beyond a unitary view of inhibitory processing in attention. Psychol. Aging 9, 491–512.

    Article  PubMed  CAS  Google Scholar 

  • Kramer A. F., Larish J., and Strayer D. L. (1995) Training for attentional control in dual-task settings: a comparison of young and old adults. J. Appl. Exper. Psychol. 1, 50–76.

    Article  Google Scholar 

  • Masunaga H. and Horn J. (2002) Expertise and age-related changes in components of intelligence. Psychol. Aging 16, 293–311.

    Article  Google Scholar 

  • Neeper S. A., Gomez-Pinilla F., Choi J., and Cotman C. (1995) Exercise and brain neurotrophins. Nature 373, 109.

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan M., Jones D. K., Summers P. E., Morris R. G., Williams S. C. R., and Markus H. S. (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57, 632–638.

    PubMed  CAS  Google Scholar 

  • Salthouse T. A. (1984) Effects of age and skill in typing. J. Exp. Psychol. Gen. 113, 345–371.

    Article  PubMed  CAS  Google Scholar 

  • Scialfa C. T., Jenkins L., Hamaluk E., and Skaloud P. (2000) Aging and the development of automaticity in conjunction search. J. Gerontol. B. Psychol. Sci. Soc. Sci. 55, 7–46.

    Google Scholar 

  • West R. L. (1996) An application of prefrontal cortex function theory to cognitive aging. Psychol. Bull. 120, 272–292.

    Article  PubMed  CAS  Google Scholar 

  • Yasuno F., Suhara T., Nakayama T., Ichimiya T., Okubo Y., Takano A., et al. (2003) Inhibitory effect of hippocampal 5-HT1A receptors on human explicit memory. Am. J. Psychiatry 160(2), 334–340.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur F. Kramer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colcombe, S.J., Kramer, A.F., McAuley, E. et al. Neurocognitive aging and cardiovascular fitness. J Mol Neurosci 24, 9–14 (2004). https://doi.org/10.1385/JMN:24:1:009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:1:009

Index Entries

Navigation