Skip to main content
Log in

The Role of Iron in Neurodegeneration

Prospects for Pharmacotherapy of Parkinson’s Disease

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Although the aetiology of Parkinson’s disease (PD) and related neurodegenerative disorders is still unknown, recent evidence from human and experimental animal models suggests that a misregulation of iron metabolism, iron-induced oxidative stress and free radical formation are major pathogenic factors. These factors trigger a cascade of deleterious events leading to neuronal death and the ensuing biochemical disturbances of clinical relevance.

A review of the available data in PD provides the following evidence in support of this hypothesis: (i) an increase of iron in the brain, which in PD selectively involves neuromelanin in substantia nigra (SN) neurons; (ii) decreased availability of glutathione (GSH) and other antioxidant substances; (iii) increase of lipid peroxidation products and reactive oxygen (O2)species (ROS); and (iv) impaired mitochondrial electron transport mechanisms. Most of these changes appear to be closely related to interactions between iron and neuromelanin, which result in accumulation of iron and a continuous production of cytotoxic species leading to neuronal death.

Some of these findings have been reproduced in animal models using 6-hydroxydopamine, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), iron loading and β-carbolines, although none of them is an accurate model for PD in humans. Although it is not clear whether iron accumulation and oxidative stress are the initial events causing cell death or consequences of the disease process, therapeutic efforts aimed at preventing or at least delaying disease progression by reducing the overload of iron and generation of ROS may be beneficial in PD and related neurodegenerative disorders.

Current pharmacotherapy of PD, in addition to symptomatic levodopa treatment, includes ‘neuroprotective’ strategies with dopamine agonists, monoamine oxidase-B inhibitors (MAO-B), glutamate antagonists, catechol O-methyltransferase inhibitors and other antioxidants or free radical scavengers. In the future, these agents could be used in combination with, or partly replaced by, iron chelators and lazaroids that prevent iron-induced generation of deleterious substances. Although experimental and preclinical data suggest the therapeutic potential of these drugs, their clinical applicability will be a major challenge for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jellinger KA. Neuropathology of movement disorders. Neurosurg Clin N Am 1998; 9: 237–62

    PubMed  CAS  Google Scholar 

  2. Paulus W, Jellinger K. The neuropathologic basis of different clinical subtypes of Parkinson’s disease. J Neuropathol Exp Neurol 1991; 50: 143–55

    Google Scholar 

  3. Ma SY, Röyttä M, Rinne JO, et al. Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson’s disease using disector counts. J Neurol Sci 1997; 151: 83–7

    PubMed  CAS  Google Scholar 

  4. Lowe J, Lennox G, Leigh PN. Disorders of movement and system degenerations. In: Graham DI, Lantos PL, editors. Greenfield’s neuropathology. 6th ed. London: E. Arnold, 1997: 280–366

    Google Scholar 

  5. Goedert M, Jakes R, Spillantini MG. Alpha-synuclein and the Lewy body. Neurosci News 1998; 1: 47–51

    CAS  Google Scholar 

  6. Perry R, McKeith J, Perry E. Dementia with Lewy bodies: the second most common cause of dementia? Neurosci News 1998; 1: 28–39

    Google Scholar 

  7. Irizarry MC, Growdon W, Gomez-Isla T, et al. Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain α-synuclein immunoreactivity. J Neuropathol Exp Neurol 1998; 57: 334–7

    PubMed  CAS  Google Scholar 

  8. Youdim MBH, Ben-Shachar D, Yehuda S, et al. The role of iron in the basal ganglion. Adv Neurol 1990; 53: 155–62

    PubMed  CAS  Google Scholar 

  9. Riederer P, Youdim MBH. Iron in central nervous system disorders. Vienna-New York: Springer-Verlag, 1993

    Google Scholar 

  10. Youdim MBH, Ben-Shachar D, Riederer P. The possible role of iron in the etiopathology of Parkinson’s disease. Mov Disord 1993; 8: 1–12

    PubMed  CAS  Google Scholar 

  11. Gerlach M, Ben-Shachar D, Riederer P, et al. Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 1994; 63: 793–807

    PubMed  CAS  Google Scholar 

  12. Gerlach M, Riederer P, Youdim MBH. Molecular mechanisms of neurodegeneration. Synergism between reactive oxygen species, calcium, and excitotoxic amino acids. Adv Neurol 1996; 69: 177–94

    PubMed  CAS  Google Scholar 

  13. Good PF, Perl DP Olanow CW. Oxidative stress with emphasis on the role of LAMMA in Parkinson’s disease. In: Connor JR, editor. Metal and oxidative damage in neurological disorders. New York: Plenum Press, 1997: 277–94

    Google Scholar 

  14. Hirsch EC, Faucheux B, Damier P, et al. Neuronal vulnerability in Parkinson’s disease. J Neural Transm 1997; 50 Suppl.: 79–88

    CAS  Google Scholar 

  15. Hirsch EC, Faucheux BA. Iron metabolism and Parkinson’s disease. Mov Disord 1998; 12Suppl. 1: 39–45

    Google Scholar 

  16. Owen AD, Schapiro AHV, Jenner P, et al. Indices of oxidative stress in Parkinson’s disease, Alzheimer’s disease and dementia with Lewy bodies. J Neural Transm 1997; 51 Suppl.: 167–73

    CAS  Google Scholar 

  17. Cooper JM, Schapira AHV. Mitochondrial dysfunction in neurodegeneration [review]. J Bioenerg Biomembr 1997; 29: 175–83

    PubMed  CAS  Google Scholar 

  18. Good PF, Olanow CW, Perl DP. LAMMA studies of iron, oxidative stress, and neuroprotective strategies in Parkinson’s disease. In: Yasui M, Strong MJ, Ota K, et al., editors. Mineral and metal neurotoxicology. Boca Raton (FL): CRC Press, 1997; 379–90

    Google Scholar 

  19. Jenner P, Olanow CW. Understanding cell death in Parkinson’s disease. Ann Neurol 1998; 44Suppl.1: S72–84

    PubMed  CAS  Google Scholar 

  20. Connor JR. Evidence for iron mismanagement in the brain in neurological disorders. In: Connor JR, editor. Metal and oxidative damage in neurological disorders. New York: Plenum Press, 1997; 23–40

    Google Scholar 

  21. Dexter DT, Carayon A, Vidailhet M, et al. Decreased ferritin levels in brain in Parkinson’s disease. J Neurochem 1990; 55: 16–20

    PubMed  CAS  Google Scholar 

  22. Olanow CW, Arendash GW. Metals and free radicals in neurodegeneration. Curr Opin Neurol 1994; 7: 548–58

    PubMed  CAS  Google Scholar 

  23. Youdim MBH, Riederer P. Understanding Parkinson’s disease. Sci Am 1997; 267: 52–9

    Google Scholar 

  24. Logroscino G, Marder K, Graziano J, et al. Altered systemic iron metabolism in Parkinson’s disease. Neurology 1997; 49: 714–7

    PubMed  CAS  Google Scholar 

  25. Marder K, Logroscino G, Tang X, et al. Systemic iron metabolism and mortality from Parkinson’s disease. Neurology 1998; 50: 1138–40

    PubMed  CAS  Google Scholar 

  26. Qian ZM, Wang Q. Expression of iron transport proteins and excessive iron accumulation in the brain of neurodegenerative disorders. Brain Res Rev 1998; 27: 257–67

    PubMed  CAS  Google Scholar 

  27. Beal MF. Mitochondrial, free radicals, and neurodegeneration. Curr Opin Neurobiol 1996; 6: 661–6

    PubMed  CAS  Google Scholar 

  28. Jenner P, Olanow CW. Pathological evidence for oxidative stress in Parkinson’s disease and related degenerative disorders. In: Olanow CW, Jenner P, Youdim MHB, editors. Neurodegeneration and neuroprotection in Parkinson’s disease. London: Academic Press, 1996: 24–45

    Google Scholar 

  29. Jenner P. Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 1998; 13Suppl. 1: 24–34

    PubMed  Google Scholar 

  30. Gerlach M, Riederer P. Animal models of Parkinson’s disease: an empirical comparison with the phenomenology of the disease in man. J Neural Transm 1996; 103: 987–1041

    PubMed  CAS  Google Scholar 

  31. Koller WC. Neuroprotective therapy for Parkinson’s disease. Exp Neurol 1997; 144: 24–8

    PubMed  CAS  Google Scholar 

  32. Olanow CW. Attempts to obtain neuroprotection in Parkinson’s disease. Neurology 1997; 49: S26–33

    PubMed  CAS  Google Scholar 

  33. Olanow W, Jenner P, editors. Neuroprotection in Parkinson’s disease. New York: Academic Press. In press

  34. Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem 1992; 59: 1609–23

    PubMed  CAS  Google Scholar 

  35. Götz ME, Künig G, Riederer P, et al. Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 1994; 63: 37–122

    PubMed  Google Scholar 

  36. Keyer K, Imlay JA. Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A 1966; 93: 13635–40

    Google Scholar 

  37. Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci U S A 1990; 87: 1620–4

    PubMed  CAS  Google Scholar 

  38. Ischiropoulos H, Zhu L, Chen J, et al. Peroxynitrite-mediated tyorsine nitration catalysed by Superoxide dismutase. Acta Biochem Biophys 1992; 298: 431–7

    CAS  Google Scholar 

  39. Smith MA, Richey PL, Sayre LM, et al. Widespread perioxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 1997; 17: 2653–7

    PubMed  CAS  Google Scholar 

  40. Beal MF. Excitoxicity and nitric oxide in Parkinson’s disease patho genes. Ann Neurol 1998; 44Suppl. 1: S110–4

    PubMed  CAS  Google Scholar 

  41. Ebadi M, Srinivasan SK, Baxi MD. Oxidative stress and antioxidant therapy in Parkinson’s disease. Prog Neurobiol 1996; 48: 1–19

    PubMed  CAS  Google Scholar 

  42. Hastings TG, Zigmond MJ. Loss of dopaminergic neurons in parkinsonism: possible role of reactive dopamine metabolites. J Neural Transm 1997; 49 Suppl.: 103–10

    CAS  Google Scholar 

  43. Kastner A, Hirsch EC, Lejeune O, et al. Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to the neuromelanin content? J Neurochem 1992; 59: 1080–9

    PubMed  CAS  Google Scholar 

  44. Uhl GR, Walther D, Mash D, et al. Dopamine transporter messenger RNA in Parkinson’s disease and control substantia nigra neurons. Ann Neurol 1994; 35: 494–8

    PubMed  CAS  Google Scholar 

  45. German DC, Manaye KF, Sonsalia PK, et al. Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced Parkinsonism-sparing of calbindin-D (26k)-containing cells. Ann N Y Acad Sci 1992; 648: 42–62

    PubMed  CAS  Google Scholar 

  46. Hirsch EC, Mouatt A, Thomasset M, et al. Expression of calbindin D (28K)-like immunoreactivity in catecholaminergic cell groups of the human midbrain: normal distribution and distribution on Parkinson’s disease. Neurodegeneration 1992; 1: 83–93

    Google Scholar 

  47. Castelnau PA, Garrett RS, Palinski W, et al. Abnormal iron deposition with lipid peroxidation in transgenic mice expressing interleukin-6 in the brain. J Neuropathol Exp Neurol 1998; 57: 268–72

    PubMed  CAS  Google Scholar 

  48. Sofic E, Riederer P, Heinsen H, et al. Increase iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 1988; 74: 199–205

    PubMed  CAS  Google Scholar 

  49. Sofic E, Lange KW, Jellinger K, et al. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 1992; 142: 128–30

    PubMed  CAS  Google Scholar 

  50. Perry TL, Godin DV, Hansen S. Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 1982; 33: 305–10

    PubMed  CAS  Google Scholar 

  51. Riederer P, Sofic E, Rausch W-D, et al. Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 1989; 52: 515–20

    PubMed  CAS  Google Scholar 

  52. Sian J, Dexter DT, Lees AJ, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 1994; 36: 348–55

    PubMed  CAS  Google Scholar 

  53. Sian J, Dexter DT, Lees AJ et al. Glutathion related enzymes in Parkinson’s disease. Ann Neurol 1994; 36: 356–61

    PubMed  CAS  Google Scholar 

  54. Spencer JPE, Jenner A. Butler J, et al. Evaluation of the pro-oxidant and antioxidant actions of 1-dopa and dopamine in vitro: implications for parkinsons disease. Free Radic Res 1996; 24: 95–105

    PubMed  CAS  Google Scholar 

  55. Church WH, Ward VL. Uric acid is reduced in the substantia nigra in Parkinson’s disease: effect of dopamine oxidation. Brain Res Bull 1994; 33: 419–524

    PubMed  CAS  Google Scholar 

  56. Mizuno Y, Matuda S, Yoshino H, et al. An immunohistochemical study on α-ketoglutarate dehydrogenase complex in Parkinson’s disease. Ann Neurol 1994; 35: 204–10

    PubMed  CAS  Google Scholar 

  57. Damier P, Hirsch EC, Zhang P, et al. Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 1993; 52: 1–6

    PubMed  CAS  Google Scholar 

  58. Saggu H, Cooksey J, Dexter D, et al. A selective increase in particulate Superoxide dismutase activity in Parkinsonian substantia nigra. J Neurochem 1989; 53: 692–7

    PubMed  CAS  Google Scholar 

  59. Yoritaka A, Hattori N, Mori H, et al. An immunohistochemical study on manganese Superoxide dismutase in Parkinson’s disease. J Neurol Sci 1997; 148: 181–6

    PubMed  CAS  Google Scholar 

  60. Radunovic A, Porto WG, Zeman S, et al. Increased mitochondrial Superoxide dismutase activity in Parkinson’s disease but not amyotrophic lateral sclerosis motor cortex. Neurosci Lett 1998; 239: 105–8

    Google Scholar 

  61. Dexter DT, Sian J, Rose S, et al. Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 1994; 35: 38–44

    PubMed  CAS  Google Scholar 

  62. Jenner P, Schapira AHV, Marsden CD. New insights into the cause of Parkinson’s disease. Neurology 1992; 42: 2241–50

    PubMed  CAS  Google Scholar 

  63. Yoritaka A, Hattori N, Uchida K, et al. Immunohistochemcial detection of 4-hydroxynonenal protein adducts in Parkinson’s disease. Proc Natl Acad Sci U S A 1996; 93: 2696–701

    PubMed  CAS  Google Scholar 

  64. Sanchez-Ramos JR, Overvik E, Ames BN. A marker of oxyradical-mediated DNA damage (8-hydroxy-2-deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain. Neurodegeneration 1994; 3: 197–204

    Google Scholar 

  65. Alam ZL, Jenner A, Daniel SE, et al. Oxidative DNA damage in the parkinsonian brain: a selective increase of 8-hydroxyguanidine in substantia nigra. J Neurochem 1997; 69: 1196–203

    PubMed  CAS  Google Scholar 

  66. Schapira AHV, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 1990; 54: 823–7

    PubMed  CAS  Google Scholar 

  67. Schapira AH, Mann VM, Cooper JM et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 1990; 55: 2142–5

    PubMed  CAS  Google Scholar 

  68. Schapira AH. Evidence for mitochondrial dysfunction in Parkinson’s disease: a critical appraisal. Mov Disord 1994; 9: 125–38

    PubMed  CAS  Google Scholar 

  69. Janetzky B, Hauck S, Youdim MB, et al. Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett 1994; 169: 126–8

    PubMed  CAS  Google Scholar 

  70. Reichmann H, Janetzky B, Riederer P. Iron-dependent enzymes in Parkinson’s disease. J Neural Transm 1995; Suppl. 46: 155–64

    Google Scholar 

  71. Swerdlow RH, Parks JK, Miller SW, et al. Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 1996; 40: 663–71

    PubMed  CAS  Google Scholar 

  72. Mytilineou C, Radcliffe PM, Olanow CW. L-(−)-desmethyl-selegiline, a metabolite of L-(−)-desmethyl selegiline protects dopamine neurons from excitotoxicity in vitro. J Neurochem 1997; 68: 434–6

    PubMed  CAS  Google Scholar 

  73. Han SK, Mytilineou C, Cohen G. L-dopa up-regulates glutathione and protects mesencephalic cultures against oxidative stress. J Neurochem 1996; 66: 501–10

    PubMed  CAS  Google Scholar 

  74. Zeevalk GD, Bernard LP, Nicklas WJ. Role of oxidative stress and the glutathione system in loss of dopamine neurons due to impairment of energy metabolism. J Neurochem 1998; 70: 1421–30

    PubMed  CAS  Google Scholar 

  75. Toffa S, Kunikowska GM, Zeng BY, et al. Glutathione depletion in rat brain does not cause nigrostriatal pathway degeneration. J Neural Transm 1997; 104: 67–75

    PubMed  CAS  Google Scholar 

  76. Schipper HM, Libermann A, Stopa EG. Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 1998; 150: 60–8

    PubMed  CAS  Google Scholar 

  77. Rouault TA, Klausner RD. Iron-sulfur clusters as biosensors of oxidants and iron. Trends Biochem Sci 1996; 23: 174–7

    Google Scholar 

  78. Shergill JK, Cammack R, Cooper CE. Detection of nitrosyl complexes in human substantia nigra, in relation to Parkinson’s disease. Biochem Biophys Res Commun 1996; 228: 298–305

    PubMed  CAS  Google Scholar 

  79. Counihan TJ, Landwehrmeer B, Lücking CH, et al. Lipid peroxidation in Parkinson’s disease, an immunohistochemical study [abstract]. Neurology 1997; 48: A202

    Google Scholar 

  80. Omar R, Smith M, Perry G, et al. Immunohistochemical evidence of oxidative stress in Parkinson’s disease [abstract]. J Neuropathol Exp Neurol 1996; 54: 634

    Google Scholar 

  81. Castellani R, Smith MA, Richey PL, et al. Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res 1996; 737: 195–200

    PubMed  CAS  Google Scholar 

  82. Good PF, Hsu A, Werner P, et al. Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 1998; 57: 338–42

    PubMed  CAS  Google Scholar 

  83. Lyras L, Perry RH, Perry EK, et al. Oxidative damage to proteins, lipids, and DNA in cortical brain regions from patients with dementia with Lewy bodies. J Neurochem 1998; 71: 302–12

    PubMed  CAS  Google Scholar 

  84. Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 1998; 70: 268–75

    PubMed  CAS  Google Scholar 

  85. Kienzl E, Puchinger L, Jellinger K, et al. The role of transition metals in the pathogenesis of Parkinson’s disease. J Neurol Sci 1995; 134 Suppl.: 69–75

    PubMed  Google Scholar 

  86. Chrichton RR. Inorganic biochemistry of iron metabolism. Chichester: Ellis Horwood Ltd, 1991

    Google Scholar 

  87. Morris CM, Candy JM, Keith A, et al. Brain iron homeostasis. J Inorg Biochem 1992; 47: 257–65

    PubMed  CAS  Google Scholar 

  88. Joshi JG. Ferritin-intracellular regulator of metal avalaibility. In: Connor JR, editors. Metal and oxidative damage in neurological disorders. New York: Plenum Press, 1997: 131–48

    Google Scholar 

  89. Richardson DR, Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta 1997; 1331: 1–40

    PubMed  CAS  Google Scholar 

  90. Dwork AJ, Schon EA, Herbert J. Non identical distribution of transferrin and ferric iron in human brain. Neuroscience 1988; 27: 333–45

    PubMed  CAS  Google Scholar 

  91. Jellinger K, Kienzl E. Iron deposits in brain disorders. In: Riederer P, Youdim MBH, editors. Iron in central nervous system disorders. Vienna: Springer-Verlag, 1993; 19–36

    Google Scholar 

  92. Connor JR, Boeshore KL, Benkovic SA, et al. Isoforms of ferritin have a specific cellular distribution in the brain. J Neurosci Res 1994; 37: 461–5

    PubMed  CAS  Google Scholar 

  93. Martin WR, Ye FQ, Allen PS. Increasing striatal iron content associated with normal aging. Mov Disord 1998; 13: 281–6

    PubMed  CAS  Google Scholar 

  94. Earle KM. Studies in Parkinson’s disease including X-ray fluorescent spectroscopy of formalin fixed tissue. J Neuropathol Exp Neurol 1968; 27: 1–14

    PubMed  CAS  Google Scholar 

  95. Sofic E, Paulus W, Jellinger K, et al. Selective increase of iron in substantia nigra zona compacta of parkinsonian brain. J Neurochem 1991; 56: 978–82

    PubMed  CAS  Google Scholar 

  96. Dexter DT, Carayon A, Javoy-Agid F, et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative disease affecting the basal ganglia. Brain 1991; 114: 1953–75

    PubMed  Google Scholar 

  97. Dexter DT, Jenner P, Schapira AH, et al. The Royal Kings and Queens Parkinson’s Disease Research Group. Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. Ann Neurol 1992; 32 Suppl.: S94–100

    PubMed  CAS  Google Scholar 

  98. Uitti RJ, Rajput AH, Rozdilsky B, et al. Regional metal concentrations in Parkinson’s disease and control brains. Can J Neurol Sci 1989; 16: 310–31

    PubMed  CAS  Google Scholar 

  99. Jellinger K. Paulus W, Grundke-Iqbal I, et al. Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm Park Dis Dement Sec 1990; 2: 327–40

    CAS  Google Scholar 

  100. Aotsuka A, Shinoto H, Kitao K, et al. Iron distribution in the substantia nigra of parkinsonian brain: PIXE analysis [abstract]. Ann Neurol 1992; 32: 248

    Google Scholar 

  101. Hirsch EC, Brandel JP, Galle P, et al. Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 1991; 56: 446–51

    PubMed  CAS  Google Scholar 

  102. Jellinger K, Kienzl E, Rumpelmair G, et al. Iron-melanin complex in substantia nigra of parkinsonian brains: an X-ray microanalysis. J Neurochem 1992; 59: 1168–71

    PubMed  CAS  Google Scholar 

  103. Good PF, Olanow CW, Perl DP. Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminium in Parkinson’s disease: a LAMMA study. Brain Res 1992; 593: 343–6

    PubMed  CAS  Google Scholar 

  104. Griffiths PD, Crossman AR. Distribution of iron in the basal ganglia and neocortex in postmortem tissue in Parkinson’s disease and Alzheimer’s disease. Dementia 1993; 4: 61–5

    PubMed  CAS  Google Scholar 

  105. Rutledge JN, Hilal SK, Silver AJ, et al. Study of movement disorders and brain iron by MR. Am J Neurol Res 1987; 8: 397–411

    Google Scholar 

  106. De Voider AG, Francart J, Laterre C, et al. Decreased glucose utilization in the striatum and frontal lobe in probable striatonigral degeneration. Ann Neurol 1989; 26: 239–47

    Google Scholar 

  107. Chen JC, Hardy PA, Kucharczyk W, et al. MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease. Am J Neurol Res 1993; 14: 275–81

    CAS  Google Scholar 

  108. Ordidge RJ, Gorell JM, Deniau JC, et al. Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3T. Magn Reson Med 1994; 32: 335–41

    PubMed  CAS  Google Scholar 

  109. Gorrell JM, Ordridge RJ, Brown GG, et al. Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 1995; 45: 1138–43

    Google Scholar 

  110. Ye FQ, Allen PS, Wayne Martin WR. Basal ganglia iron content in Parkinson’s disease measured with magnetic resonance. Mov Disord 1996; 11: 243–9

    PubMed  CAS  Google Scholar 

  111. Aime S, Bergamasco B, Biglino D. EPR investigations of the iron domain in neuromelanin. Biochim Biophys Acta Mol Basis Dis 1997; 1361: 49–58

    CAS  Google Scholar 

  112. Bauminger ER, Barcikowska M, Friedman A. Does iron play a role in Parkinson’s disease? Hyperfine Interact 1994; 91: 853–7

    CAS  Google Scholar 

  113. Galazka-Friedman J, Bauminger ER, Friedman A, et al. Iron in parkinsonian and control substantia nigra: a Mössbauer spectroscopy study. Mov Disord 1996; 11: 8–16

    PubMed  CAS  Google Scholar 

  114. Lhermitte J, Kraus WM, McAlpine MA. On the occurence of abnormal deposits of iron in the brain in Parkinsonism with special reference to its localization. J Neurol Psychopathol 1924; 5: 195–208

    PubMed  CAS  Google Scholar 

  115. Gerlach M, Trautwein AX, Zecca L, et al. Moessbauer spectroscopic studies of purified human neuromelanin isolated from the substantia nigra. J Neurochem 1995; 65: 923–6

    PubMed  CAS  Google Scholar 

  116. Galazka-Friedman J, Friedman A. Controversies about iron in parkinsonian and control substantia nigra. Acta Neurobiol (Warsz) 1997; 57: 217–25

    CAS  Google Scholar 

  117. Gerlach M, Hirsch E, Jellinger K, et al. Iron in the parkinsonian substantia nigra. Mov Disord 1997; 12: 258–60

    PubMed  CAS  Google Scholar 

  118. Olanow CW, Hauser RA. Magnetic resonance imaging in neurodegenerative diseases. In: Calne DB, editor. Neurodegenerative diseases. Philadelphia (PA): WB Saunders, 1994: 445–69

    Google Scholar 

  119. Ryvlin P, Broussolle E, Piollet H, et al. Magnetic resonance imaging evidence of decreased putamenal iron content in id-iopathic Parkinson’s disease. Arch Neurol 1995; 52: 583–8

    PubMed  CAS  Google Scholar 

  120. Schipper HM, Vinisky R, Brull R, et al. Astracyte mitochondria: a substrate for iron deposition in the aging rat substantia nigra. Exp Neurol 1998; 152: 188–96

    PubMed  CAS  Google Scholar 

  121. Theil E. Regulation of ferritin and transferrin receptor mRNAs. J Biol Chem 1990; 265: 4771–4

    PubMed  CAS  Google Scholar 

  122. Connor JR, Snyder BS, Arosio P, et al. A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J Neurochem 1995; 65: 717–24

    PubMed  CAS  Google Scholar 

  123. Mann VM, Cooper JM, Daniel SE, et al. Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 1994; 36: 876–81

    PubMed  CAS  Google Scholar 

  124. Perez M, Valpueste JM, Degarcin EN, et al. Ferritin is associated with the aberrant tau-filaments present in progressive supranuclear palsy. Am J Pathol 1998; 152: 1531–9

    PubMed  CAS  Google Scholar 

  125. Mash D, Pablo J, Buck B, et al. Distribution and number of tranferrin receptors in Parkinson’s disease and in MPTP-trated mice. Exp Neurol 1991; 114: 73–81

    PubMed  CAS  Google Scholar 

  126. Morris CM, Candy JM, Omar S, et al. Transferrin receptors in the Parkinsonian midbrain. Neuropathol Appl Neurobiol 1994; 20: 468–72

    PubMed  CAS  Google Scholar 

  127. Faucheux Ba, Hirsch EC, Villares J, et al. Distribution of 125Iferrotransferrin binding sites in the mesencephalon of control subjects and patients with Parkinson’s disease. J Neurochem 1993; 60: 2338–41

    PubMed  CAS  Google Scholar 

  128. Loeffler DA, Conner NR, Juneou P, et al. Transferrin and iron in normal, Alzheimer disease and Parkinson’s disease brain regions. J Neurochem 1995; 65: 710–6

    PubMed  CAS  Google Scholar 

  129. Mash DC, Singer J, Pablo J, et al. Differential regulation of iron storage and transport markers in Parkinson’s disease. Neurology 1994; 44Suppl. 2: 269

    Google Scholar 

  130. Faucheux Ba, Herrero MT, Villares J, et al. Autoradiographic localization and density of [125I]ferrotransferrin binding sites in the basal ganglia of control subjects, patients with Parkinson’s disease and MPTP-lesioned monkeys. Brain Res 1995; 691: 115–24

    PubMed  CAS  Google Scholar 

  131. Leenders KL, Antonini A, Pellikka R. Brain iron uptake in patients with Parkinson’s disease measured using (52Fe)-citrate and positron emission tomography [abstract]. New Trends Clin Neuropharmacol 1994; 8: 130

    Google Scholar 

  132. Faucheux BA, Nillesse N, Damier P, et al. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc Natl Acad Sci U S A 1995; 92: 9603–7

    PubMed  CAS  Google Scholar 

  133. Leveugle B, Faucheux BA, Bouras C, et al. Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson’s disease cases. Acta Neuropathol 1996; 91: 566–72

    PubMed  CAS  Google Scholar 

  134. Faucheux BA, Hauw JJ, Agid Y, et al. The density of 125l-transferrin binding sites on perikarya of melanized neurons of the substantia nigra is decreased in Parkinson’s disease. Brain Res 1997; 749: 170–4

    PubMed  CAS  Google Scholar 

  135. Schipper HM, Wang X, Manganaro F. A mechanism for pathological glial iron sequestration in Parkinson’s disease. Ann Neurol 1995; 38: A327

    Google Scholar 

  136. Blank CL, Lewis RJ, Lehr RE. 6-Hydroxydopamine and related catecholaminergic neurotoxins, molecular mechanisms. In: Kostrzewa RM, editor. Highly selective neurotoxins: basic and clinical applications. Totawa: Humana Press, 1998; 1–18

    Google Scholar 

  137. Hall S, Rulledge JH, Challert T. MRI brain iron and 6-hydroxydopamine experimental Parkinson’s disease. J Neurol Sci 1992; 113: 198–208

    PubMed  CAS  Google Scholar 

  138. He Y, Thong PSP, Lee T, et al. Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study. Brain Res 1996; 735: 149–53

    PubMed  CAS  Google Scholar 

  139. Oestreicher E, Sengstock GJ, Riederer P, et al. Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 1994; 660: 8–18

    PubMed  CAS  Google Scholar 

  140. Double KL, Maywald M, Schmittel M, et al. In vitro studies of ferritin iron release and neurotoxicity. J Neurochem 1998; 70: 2492–9

    PubMed  CAS  Google Scholar 

  141. Monteiro HP, Winterbourn CC. 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 1989; 38: 4177–82

    PubMed  CAS  Google Scholar 

  142. Kumar R, Agarwal AK, Seth PK. Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem 1995; 64: 1703–7

    PubMed  CAS  Google Scholar 

  143. Pezzella A, Dischia M, Napolitano A. Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson’s disease. J Med Chem 1997; 40: 221–6

    Google Scholar 

  144. Glinka Y, Tipton KF, Youdim MB. Nature of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine. J Neurochem 1996; 66: 2004–10

    PubMed  CAS  Google Scholar 

  145. Shoham S, Glinka Y, Tenne Z, et al. Brain iron: function and dysfunction in relation to cognitive processes. In: Hallberg L, Asp NG, editors. Iron nutrition in health and disease. London: John Libbey, 1996: 205–18

    Google Scholar 

  146. Ben-Shachar D, Eshei U, Finberg JPM, et al. The iron chelator desferrioxamine (desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 1991; 56: 1441–4

    PubMed  CAS  Google Scholar 

  147. Perumal AS, Gopal VB, Tordzro K, et al. Vitamin E attentuates the toxic effects of 6-hydroxydopamine of free radical scavenging systems in rat brain. Brain Res Bull 1992; 29: 699–701

    PubMed  CAS  Google Scholar 

  148. Lan J, Jiang DH. Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J Neural Transm 1997; 104: 469–81

    PubMed  CAS  Google Scholar 

  149. Hasegawa E, Takeshige K, Oishi T, et al. 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation, and enhances NADH-dependent lipid peroxidation in bovien heart submitochondrial particles. Biochem Biophys Res Commun 1990; 170: 1049–55

    PubMed  CAS  Google Scholar 

  150. Cleeter MWJ, Cooper JM, Schapira AHV. Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem 1992; 58: 786–9

    PubMed  CAS  Google Scholar 

  151. Ogawa N, Edamatsu R, Mizukawa K, et al. Degeneration of dopaminergic neurons and free radicals: possible participation of levodopa. Adv Neurol 1993; 60: 242–50

    PubMed  CAS  Google Scholar 

  152. Youdim MBH, Glinka Y. Iron dependent mechanisms of dopaminergic toxicity of 6-hydroxydopamine. Biogen Amin 1996; 12: 181–90

    CAS  Google Scholar 

  153. Royland JE, Langsten JW. MPTP: a dopaminergic neurotoxism. In: Kostrzewa RM, editor. Highly selective neurotoxins: basic and clinical application. Totawa: Humana Press, 1998: 141–94

    Google Scholar 

  154. Singer TP, Castagnoli N Jr, Ramsay RR, et al. Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 1987; 49: 1–8

    PubMed  CAS  Google Scholar 

  155. Przedborski S, Jackson-Lewis V. Mechanisms of MPTP toxicity. Mov Disord 1998; 13Suppl. 1: 35–8

    PubMed  Google Scholar 

  156. Tipton KF, Singer TP. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 1993; 61: 1191–06

    PubMed  CAS  Google Scholar 

  157. Desole MS, Esposito G, Fresu L, et al. Correlation between 1-methyl-4-phenylpyridinium ion (MPP+) levels, ascorbic acid oxidation and glutathione levels in the striatal synaptosomes of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rats. Neurosci Lett 1993; 161: 121–3

    PubMed  CAS  Google Scholar 

  158. Huguet F, Page G, Morel P, et al. MPTP toxicity in rat striatal slices: dopamine uptake alteration does not appear to be related to lipid peroxidation. Toxicology 1997; 122: 93–9

    PubMed  CAS  Google Scholar 

  159. Cassarino DS, Fall CP, Swerdlow RH. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 1997; 1361: 49–58

    Google Scholar 

  160. Gerlach M, Götz M, Dirr A, et al. Acute MPTP treatment produces no changes in mitochondrial complex activities and indices of oxidative damage in the common marmoset ex vivo one week after exposure to the toxin. Neurochem Int 1996; 28: 41–9

    PubMed  CAS  Google Scholar 

  161. Nakamura K, Wang WY, Kang UJ. The role of glutathione in dopaminergic neuronal survival. J Neurochem 1997; 69: 1850–8

    PubMed  CAS  Google Scholar 

  162. Cleeter MWJ, Cooper JM, Schapira AHV. Nitric oxide enhances MPP+ inhibition of complex I. J Neurochem. In press

  163. Hantraye P, Brouielet E, Ferrante R, et al. Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat Med 1996; 2: 1017–21

    PubMed  CAS  Google Scholar 

  164. Przedborski S, Jackson-Lewis Y, Yokoyama R, et al. Role of neuronal nitric oxide in MPTP-induced domaminergic neurotoxicity. Proc Natl Acad Sci U S A 1996; 93: 4565–71

    PubMed  CAS  Google Scholar 

  165. Mochizuki H, Imai H, Endo H, et al. Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced hemiparkinsonism in monkeys. Neurosci Lett 1994; 168: 251–3

    PubMed  CAS  Google Scholar 

  166. Temlett JA, Landsberg JP, Watt F, et al. Increased iron in the substantia nigra compacta of the MPTP-Iesioned hemiparkinsonian african green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 1994; 62: 134–46

    PubMed  CAS  Google Scholar 

  167. Goto K, Mochizuki H, Imai H, et al. An immuno-histochemical study of ferritin in 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced hemiparkinsonian monkeys. Brain Res 1996; 724: 125–8

    PubMed  CAS  Google Scholar 

  168. Anghileri LJ, Thouvenot P, Bertrand A. Effects of iron complexes on brain calcium homeostasis. Ann Clin Lab Sci 1997; 27: 210–5

    PubMed  CAS  Google Scholar 

  169. Santiago M, Matarredona ER, Granero L, et al. Neuroprotective effect of the iron chelator desferrioxamine against MPP+ toxicity on striatal dopaminergic terminals. J Neurochem 1997; 68: 732–8

    PubMed  CAS  Google Scholar 

  170. Matarredona ER, Santiago M, Cano J, et al. Involvement of iron in MPP+ toxicity in substantia nigra: protection by desferrioxamine. Brain Res 1997; 773: 76–81

    PubMed  CAS  Google Scholar 

  171. Lange KW, Kornhuber J, Riederer P. Dopamine/glutamate interactions in Parkinson’s disease [review]. Neurosci Biobehav Rev 1997; 21: 393–400

    PubMed  CAS  Google Scholar 

  172. Le WD, Jankovic J, Xie WJ, et al. Protection of 1-methyl-4phenylpyridium ion (MPP(+)-induced apoptosis independent of MAO-B inhibition. Neurosci Lett 1998; 224: 197–200

    Google Scholar 

  173. Blanchet PJ, Konitsiotis S, Hyland K, et al. Chronic exposure to MPTP as a primate model of progressive parkinsonism: a pilot study with a free radical scavenger. Exp Neurol 1998; 153: 214–22

    PubMed  CAS  Google Scholar 

  174. Sengstock G, Olanow C, Menzies R, et al. Infusion of iron into the rat substantia nigra; nigral pathology and dose-dependent loss of striatal dopaminergic markers. J Neurosci Res 1993; 35: 67–82

    PubMed  CAS  Google Scholar 

  175. Sziraki I, Hohana-Kumar KP, Rauhals P, et al. Manganese: a transition metal protects nigrostriatal neurons from oxidative stress in the iron-induced animal model of parkinsonism. Neuroscience 1998; 85: 1101–11

    PubMed  CAS  Google Scholar 

  176. Wesemann W, Blaschke S, Solbach M, et al. Intranigral injected iron progressively reduces striatal dopamine metabolism. J Neural Transm Park Dis Dement Sect 1994; 8: 209–14

    PubMed  CAS  Google Scholar 

  177. Ben-Shachar D, Youdim MBH. Intranigral iron injection induces behavioral and biochemical ‘parkinsonism’ in rats. J Neurochem 1991; 57: 2133–5

    PubMed  CAS  Google Scholar 

  178. Sengstock GJ, Olanow CW, Dunn AJ. Striatal dopaminergic markers, nigral volume, and rorational behavior following iron infusion into the rat substantia nigra. Exp Neurol 1994; 130: 82–94

    PubMed  CAS  Google Scholar 

  179. Arendash G, Sengstock G, Olanow C, et al. Intranigral iron infusion as a model for Parkinson’s disease. In: Woodruff W, Nonneman A, editors. Toxin-induced models of neurological disorders. New York: Plenum Press, 1994: 175–212

    Google Scholar 

  180. Shen XN, Bryburst G. Iron- and manganese-catalyzed autoxidation of dopamine in the presence of 1-cysteine: possible insights into iron- and manganese-mediated dopaminergic neurotoxicity. Chem Res Toxicol 1998; 11: 824–37

    PubMed  CAS  Google Scholar 

  181. Michel PP, Vyas S, Agid Y. Toxic effects of iron for cultured mesencephalic dopaminergic neurons derived from rat embryonic brains. J Neurochem 1992; 59: 118–27

    PubMed  CAS  Google Scholar 

  182. Sengstock GJ, Zawia NH, Olanow CW. Intranigral iron infusion in the rat: acute elevations in nigral lipid peroxidation and striatal dopaminergic markers with ensuing nigral degeneration. Biol Trace Elem Res 1997; 58: 177–95

    PubMed  CAS  Google Scholar 

  183. Rauhala P, Lin AMY, Chiueh CC. Neuroprotection by S-nitroglutathione of brain dopamine neurons from oxidative stress. FASEB J 1998; 12: 165–73

    PubMed  CAS  Google Scholar 

  184. Lan J, Jiang DH. Excessive iron accumulation in the brain: a possible potential risk of neurodegeneration in Parkinson’s disease. J Neural Transm 1997; 104: 649–66

    PubMed  CAS  Google Scholar 

  185. Bringmann G, God R, Feineis D, et al. The TaClo concept: 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo), a new toxin for dopaminergic neurons. J Neural Transm 1995; Suppl. 46: 235–44

    Google Scholar 

  186. Bringmann G, Feineis D, God R, et al. Neurotoxic effects on the dopaminergic system induced by Taclo (1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline), a potential mamalian alkaloid; in vivo and in vitro studies. Biogen Amines 1996; 12: 83–102

    CAS  Google Scholar 

  187. Leuschner J, Beuscher N, Zimmermann T, et al. Investigation on plasma levels of the neurotoxin 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline after oral administration of chloral hydrate in man. Arzneimittelforschung 1998; 48: 1–5

    PubMed  CAS  Google Scholar 

  188. Rausch W-D, Abdel-Mohsen M, Koutsilieri E, et al. Studies of the potentially endogenous toxin TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline) in neuronal and glial cell cultures. J Neural Transm 1995; Suppl. 46: 255–63

    Google Scholar 

  189. Sontag K-H, Heim C, Sontag TA, et al. Long-term behavioural effects of TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline) after subchronic treatment in rats. J Neural Transm 1995; Suppl. 46: 283–9

    Google Scholar 

  190. Grote C, Clement HW, Wesemann W, et al. Biochemical lesions of the nigrostriatal systems by TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline) and derivates. J Neural Transm 1995; Suppl. 46: 275–81

    Google Scholar 

  191. Krueger MJ, Tan AK, Ackrell BA, et al. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MPP+) and N-methyl-beta-carbolines? Biochem J 1993; 291: 673–6

    PubMed  CAS  Google Scholar 

  192. Janetzky B, God R, Bringmann G, et al. α-Trichloromethyl-1,2,3,4-tetrahydro-β-carboline, anew inhibitor of complex I. J Neural Transm 1995; Suppl. 46: 265–73

    Google Scholar 

  193. Wilson JX et al. TaClo has no toxic effects on the striato-nigral system. J Neurochem 1999. In press

    Google Scholar 

  194. Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 1994; 59: 401–5

    PubMed  CAS  Google Scholar 

  195. Enochs WS, Nilges MJ, Swartz HM. Purified human neuromelanin, synthetic dopamine melanin as a potential model pigment, and the normal human substantia nigra: characterization by electron paramagnetic resonance spectroscopy. J Neurochem 1992; 61: 68–79

    Google Scholar 

  196. Enochs WS, Sarna T, Zecca L, et al. The roles of neuromelanin, binding of metal ions, and oxidative cytotoxicity in the pathogenesis of Parkinson’s disease: a hypothesis. J Neural Transm Park Dis Dement Sect 1994; 7: 83–100

    PubMed  CAS  Google Scholar 

  197. Zecca L, Parati E, Mecacci C, et al. The chemical characterization of melanin contained in substantia nigra of human brain. Biochim Biophys Acta 1992; 1138: 6–10

    PubMed  CAS  Google Scholar 

  198. Odh G, Carstam R, Paulson J, et al. Neuromelanin of the human substantia nigra: a mixed-type melanin. J Neurochem 1994; 62: 2030–6

    PubMed  CAS  Google Scholar 

  199. Zecca L, Pietra R, Goj C, et al. Iron and other metals in neuromelanin, substantia nigra, and putamen of human brain. J Neurochem 1994; 62: 1097–101

    PubMed  CAS  Google Scholar 

  200. Zecca L, Shima T, Stroppolo A. Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience 1996; 73: 407–15

    PubMed  CAS  Google Scholar 

  201. Shima T, Sama T, Swartz HM. Binding of iron to neuromelanin of human substantia nigra and synthetic melanin: an electron paramagnetic resonance spectroscopy study. Free Radic Biol Med 1997; 23: 110–9

    PubMed  CAS  Google Scholar 

  202. Linert W, Jameson RF, Herlinger E. Complex formation followed by internal electron transfer: the reaction between Ldopa and iron (III). Inorg Chim Acta 1991; 187: 239–47

    CAS  Google Scholar 

  203. Linert W, Herlinger E, Jameson RF, et al. Dopamine, 6-hydroxydopamine, iron, and dioxygen: their mutual interactions and possible implication in the development of Parkinson’s disease. Biochim Biophys Acta 1996; 1316: 160–8

    PubMed  Google Scholar 

  204. Jellinger K, Linert L, Kienzl E, et al. Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson’s disease. J Neural Transm 1995; 46 Suppl.: 297–314

    CAS  Google Scholar 

  205. Korytowski W, Sama T, Zareba M. Antioxidant action of neuromelanin: the mechanism of inhibitory effect on lipid peroxidation. Arch Biochem Biophys 1995; 319: 142–8

    PubMed  CAS  Google Scholar 

  206. Zareba M, Bober A, Korytowski W, et al. The effect of synthetic neuromelanin on yield of free hydroxyl radical generated in model systems. Biochim Biophys Acta 1995; 1271: 343–8

    PubMed  Google Scholar 

  207. Hartley A, Cooper JJ, Schapira AHV. Iron induced oxidative stress and mitochondrial dysfunction: relevance to Parkinson’s disease. Brain Res 1993; 627: 349–53

    CAS  Google Scholar 

  208. Chiueh CC, Murphy DL, Miyake H, et al. Hydroxyl free radical (⋅OH) formation reflected by salicylate hydroxylation and neuromelanin: in vivo markers for oxidative injury of nigral neurons. Ann N Y Acad Sci 1993; 679: 370–5

    PubMed  CAS  Google Scholar 

  209. Andrew R, Watson DG, Best SA, et al. The determination of hydroxydopamines and other trace amines in the urine of Parkinsonian patients and normal controls. Neurochem Res 1993; 18: 1175–7

    PubMed  CAS  Google Scholar 

  210. Herrlinger E, Jameson RF, Linert W. The spontaneous autoxidation of dopamine. J Chem Soc Perkin Trans 1994; 2: 259–63

    Google Scholar 

  211. Galvani P, Colleoni M, Origgi M, et al. Mitochondrial toxicity of iron and the protective role of ferritin on dopaminergic PC12 cell lines. Toxicol Vitro 1995; 9: 365–8

    CAS  Google Scholar 

  212. Mochizuki H, Nishi K, Mizuno Y. Iron-melanin complex is toxic to dopaminergic neurons in a nigrostriatal co-culture. Neurodegeneration 1993; 2: 1–7

    Google Scholar 

  213. Velez-Pardo C, Osirio MJ, Verschueren H, et al. Dopamine and iron induce apoptosis in PC 12 cells. Pharmacol Toxicol 1997; 80: 76–84

    PubMed  CAS  Google Scholar 

  214. Offen D, Ziv I, Barzilai A, et al. Dopamine-melanin induces apoptosis in PC12 cells: possible implications for the etiology of Parkinson’s disease. Neurochem Int 1997; 31: 207–16

    PubMed  CAS  Google Scholar 

  215. Michel PP, Hefti F. Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J Neurosci Res 1990; 26: 428–35

    PubMed  CAS  Google Scholar 

  216. Ziv I, Zilkha-Falb R, Offen D, et al. Levodopa induces apoptosis in cultured neuronal cells: a possible accelerator of nigrostriatal degeneration in Parkinson’s disease? Mov Disord 1997; 12: 17–23

    PubMed  CAS  Google Scholar 

  217. Abbott RA, Cox M, Markus H, et al. Diet, body size and micro-nutrient status in Parkinson’s disease. Eur J Clin Nutr 1992; 46: 879–84

    PubMed  CAS  Google Scholar 

  218. Cabrera-Valdivia F, Jimenez-Jimenez FJ. Peripheral iron metabolism in patients with Parkinson’s disease. J Neurol Sci 1994; 125: 82–6

    PubMed  CAS  Google Scholar 

  219. Winsper SJ, Armstrong RA, Hodgkins PS, et al. Gallium-transferrin binding in treated and untreated Parkinson’s disease. Neuroreport 1997; 8: 709–11

    PubMed  CAS  Google Scholar 

  220. Ahlskog E, Uitti RJ, Low PA, et al. No evidence for systemic oxidant stress in Parkinson’s disease or Alzheimer’s disease. Mov Disord 1995; 10: 566–71

    PubMed  CAS  Google Scholar 

  221. Logroscino G, Marder K, Graziano J, et al. Dietary iron, animal fats, and risk of Parkinson’s disease. Mov Disord 1998; 13Suppl. 1: 13–6

    PubMed  Google Scholar 

  222. Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 1997; 23: 134–47

    PubMed  CAS  Google Scholar 

  223. Shinoba LA, Beal MF. The role of oxidative processes and metal ions in aging and Alzheimer’s disease. In: Connor JR, editor. Metal and oxidative damage in neurological disorders. New York: Plenum Press, 1997; 247–75

    Google Scholar 

  224. Arendash GW, Crandall BM, Kienzl E, et al. Neocortical iron levels in Alzheimer’s disease correlate with neocortical lipid peroxidation and amyloid angiopathy. In: Collery P, Corbella J, Domingo JL, et al., editors. Metal ions in biology and medicine. Vol. 4. Paris: John Libbey Eurotext, 1996: 614–6

    Google Scholar 

  225. Perry G, Smith MA. A central role for oxidative damage in the pathogenesis and therapeutics of Alzheimer’s disease. Alzheimer Dis ID Res Alert 1997; 2: 319–34

    Google Scholar 

  226. Contin M, Riva R, Albani F, et al. Pharmacokinetic optimisation in the treatment of Parkinson’s disease. Clin Pharmacokinet 1996; 30: 463–81

    PubMed  CAS  Google Scholar 

  227. Hughes AJ. Drug treatment of Parkinson’s disease in the 1990s: achievements and future possibilities. Drugs 1997; 53: 195–205

    PubMed  CAS  Google Scholar 

  228. Fahn S. Levodopa-induced neurotoxicity: does it represent a problem for the treatment of Parkinson’s disease? CNS Drugs 1997; 8: 376–93

    CAS  Google Scholar 

  229. Lees AJ. Dopamine agonists in Parkinson’s disease: a look at apomorphine. Fundam Clin Pharmacol 1993; 7: 121–8

    PubMed  CAS  Google Scholar 

  230. Lange KW, Rausch WD, Gsell W, et al. Neuroprotection by dopamine agonists. J Neural Transm 1994; Suppl. 43: 183–201

    Google Scholar 

  231. Jenner P. The rationale for the use of dopamine agonists in parkinsons disease. Neurology 1995; Suppl. 45: 6–12

    Google Scholar 

  232. Tanaka M, Sotomatsu A, Yoshida T, et al. Inhibitory effects of bromocriptine on phospholipid peroxidation induced by dopa and iron. Neurosci Lett 1995; 183: 116–9

    PubMed  CAS  Google Scholar 

  233. Uitti RJ, Ahlskog JE. Comparative review of dopamine receptor agonists in Parkinson’s disease. CNS Drugs 1996; 5: 369–88

    CAS  Google Scholar 

  234. Watts RL. The role of dopamine agonists in early Parkinson’s disease. Neurology 1997; 49: S34–48

    PubMed  CAS  Google Scholar 

  235. Balvi A, Ford B. Antiparkinsonian agents. CNS Drugs 1998; 9: 291–310

    Google Scholar 

  236. Sam EE, Verbeke N. Free radical scavenging properties of apomorphine enanatiomers and dopamine: possible implication in their mechanism of action in parkinsonism. J Neural Transm Park Dis Dement Sect 1995; 10: 115–27

    PubMed  CAS  Google Scholar 

  237. Gassen M, Glinka Y, Pinchasi B, et al. Apomorphine is a highly potent free radical scavenger in rat brain mitochondrial fraction. Eur J Pharmacol 1996; 308: 219–25

    PubMed  CAS  Google Scholar 

  238. Gassen M, Gross A, Youdim MBH. Apomorphine enantiomers protect pheochromocytma (PC12) cells from oxidative stress induced by hydrogen peroxide and 6-hydroxydopamine. Mov Disord 1998. In press

    Google Scholar 

  239. Gassen M, Gross A, Youdim MBH. Iron chelating, antioxidant, and cytoprotective properties of dopamine receptor agonist apomorphin. In: Olanow W, Jenner P, editors. Neuroprotection in Parkinson’s disease. New York: Academic Press, 1998: In press

    Google Scholar 

  240. Sawada H, Ibi M, Kihara T, et al. Dopamine D2-type agonists protect mesencephalic neurons from glutamata neurotoxicity: mechanisms of neuroprotective treatment against oxidative stress. Ann Neurol 1998; 44: 110–9

    PubMed  CAS  Google Scholar 

  241. Gupta M, Wiener HL. Effects of deprenyl on monoamine oxidase and neurotransmitters in the brains of MPTP-treated aging mice. Neurochem Res 1995; 20: 385–9

    PubMed  CAS  Google Scholar 

  242. Wu RM, Murphy DL, Chiueh CC. Neuronal protective and rescue effects of deprenyl against MPP+ dopaminergic toxicity. J Neural Transm 1995; 100: 53–61

    CAS  Google Scholar 

  243. Thiffault C, Aumont N, Quirion R, et al. Effects of MPTP and L-deprenyl on antioxidant enzymes and lipid peroxidation levels in mouse brain. J Neurochem 1995; 65: 2725–33

    PubMed  CAS  Google Scholar 

  244. Magyar K, Szende B, Lengyel J, et al. The neuroprotective and neuronal rescue effects of (−)-deprenyl. J Neural Transm 1998; 52: 109–23

    CAS  Google Scholar 

  245. Mytilineou C, Radcliffe P, Leonardi EK, et al. L-deprenyl protects mesencephalic dopamine neurons from glutamate receptor-mediated toxicity in vitro. J Neurochem 1997; 68: 33–9

    PubMed  CAS  Google Scholar 

  246. The Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1993; 328: 176–83

    Google Scholar 

  247. Wiseman LR, McTavish D. Selegiline: a review of its clinical efficacy in Parkinson’s disease and its clinical potential in Alzheimer’s disease. CNS Drugs 1995; 4: 230–46

    CAS  Google Scholar 

  248. Olanow CW, Hauser RA, Gauger L, et al. The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol 1995; 38: 771–7

    PubMed  CAS  Google Scholar 

  249. Parkinson Study Group. Impact of deprenyl and tocopherol treatment in Parkinson’s disease in DATATOP subjects not requiring levodopa. Ann Neurol 1996; 39: 29–36

    Google Scholar 

  250. Ward C. Does selegiline delay progression of Parkinson’s disease? A critical re-evaluation of the DATATOP study. J Neurol Neurosurg Psychiatry 1994; 57: 217–20

    PubMed  CAS  Google Scholar 

  251. LeWitt P, Oakes D, Cui L, et al. The Parkinson Study Group. The need for levodopa as an end point of Parkinson’s disease: progression in a clinical trial of selegiline and α-tocopherol. Mov Disord 1997; 12: 183–9

    PubMed  CAS  Google Scholar 

  252. Shoulson I, Oakes D, Fahn S, et al. Mortality in DATATOP: a multicenter trial in early Parkinson’s disease. Ann Neurol 1998; 43: 318–25

    Google Scholar 

  253. Bentueferrer D, Menard G, Allain H. Monoamine oxidase B inhibitors: current status and future potential. CNS Drugs 1996; 6: 217–36

    CAS  Google Scholar 

  254. Cooper AJ, Carroll CB, Mitchell IJ. Glutamate antagonists for Parkinson’s disease: rationale for use and therapeutic implications. CNS Drugs 1998; 9: 421–9

    CAS  Google Scholar 

  255. Komhuber J, Weiler M, Schoppmeyer K, et al. Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm 1994; Suppl. 43: 91–104

    Google Scholar 

  256. Lange KW, Riederer P. Glutamatergic drugs in Parkinson’s disease. Life Sci 1994; 55: 2067–75

    PubMed  CAS  Google Scholar 

  257. Uitti RJ, Rajput AH, Ahlskog JE, et al. Amantadine treatment is an independent predictor of improved survival in Parkinson’s disease. Neurology 1996; 46: 1551–6

    PubMed  CAS  Google Scholar 

  258. Danysz W, Parsons CG, Kornhuber J, et al. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents: preclinical studies. Neurosci Biobehav Rev 1997; 21: 455–68

    PubMed  CAS  Google Scholar 

  259. Montastruc JL, Rascol O, Senard JM. Glutamate antagonists and Parkinson’s disease: a review of clinical data. Neurosci Biobehav Rev 1997; 21: 477–80

    PubMed  CAS  Google Scholar 

  260. Blandini F, Greenamyre JT. Prospects of glutamate antagonists in the therapy of Parkinson’s disease. Fundam Clin Pharmacol 1998; 12: 4–12

    PubMed  CAS  Google Scholar 

  261. Loopuijt LD, Schmidt WJ. The role of NMDA receptors in the slow neuronal degeneration of Parkinson’s disease. Amino Acids 1998; 14: 17–23

    PubMed  CAS  Google Scholar 

  262. Benazzouz A, Boraud T, Dubedat P, et al. Riluzole prevents MPTP-induced parkinsonism in the rhesus monkey: a pilot study. Eur J Pharmacol 1995; 284: 299–307

    PubMed  CAS  Google Scholar 

  263. Barneoud P, Mazadier M, Miquet JM, et al. Neuroprotective effects of riluzole on a model of Parkinson’s disease in the rat. Neuroscience 1996; 74: 971–83

    PubMed  CAS  Google Scholar 

  264. McNeely W, Davis R. Entacapone. CNS Drugs 1997; 8: 79–88

    CAS  Google Scholar 

  265. Spencer CM, Benfield P. Tolcapone. CNS Drugs 1996; 5: 475–81

    CAS  Google Scholar 

  266. Nissinen E, Kaheinen P, Penttila KE, et al. Entacapone, a novel catechol-O-methyltransferase inhibitor for Parkinson’s disease, does not impair mitochondrial energy production. Eur J Pharmacol 1997; 340: 287–94

    PubMed  CAS  Google Scholar 

  267. Miller JW, Seihub J, Joseph JA. Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin. Free Radic Biol Med 1996; 21: 241–9

    PubMed  CAS  Google Scholar 

  268. Acunacastroviejo D, Cotomontes A, Monti MG, et al. Melatonin is protective against MPTP-induced striatal and hippocampal lesions. Life Sci 1996; 60: PL23–9

    Google Scholar 

  269. Reiter RJ. Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 1998; 56: 359–84

    PubMed  CAS  Google Scholar 

  270. Packer L, Landvik S. Vitamin E in biological systems. Adv Exp Med Biol 1990; 264: 93–103

    PubMed  CAS  Google Scholar 

  271. Przedborski S, Jackson-Lewis V, Fahn S. Antiparkinsonian therapies and brain mitochondrial complex I activity. Mov Disord 1995; 10: 312–7

    PubMed  CAS  Google Scholar 

  272. Derijk MC, Breteler MMB, Denbreeijen JH, et al. Dietary antioxidants and Parkinson’s disease: the Rotterdam study. Arch Neurol 1997; 54: 762–5

    CAS  Google Scholar 

  273. Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, α-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 1997; 336: 1216–22

    PubMed  CAS  Google Scholar 

  274. Dipaola R, Uitti RJ. Early detection of Parkinson’s disease: implications for treatment. Drugs Aging 1996; 9: 159–68

    CAS  Google Scholar 

  275. Diamond SG, Markham CH, Hoehn MM, et al. Multi-center study of Parkinson’s mortality with early versus late dopa treatment. Ann Neurol 1987; 22: 8–12

    PubMed  CAS  Google Scholar 

  276. Scigliano G, Musicco M, Soliveri P, et al. Mortality associated with early and late levodopa therapy initiation in Parkinson’s disease. Neurology 1990; 40: 265–9

    PubMed  CAS  Google Scholar 

  277. Clarke CE. Does levodopa therapy delay death in Parkinson’s disease? A review of the evidence. Mov Disord 1995; 10: 250–6

    PubMed  CAS  Google Scholar 

  278. Lees AJ. Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson’s disease. BMJ 1995; 313: 1602–7

    Google Scholar 

  279. Agid Y. Levodopa: is toxicity a myth? Neurology 1998; 50: 858–63

    PubMed  CAS  Google Scholar 

  280. Gassen M, Youdim MBH. The potential role of iron chelators in the treatent of Parkinson’s disease and related neurological disorders. Pharmacol Toxicol 1997; 80: 159–66

    PubMed  CAS  Google Scholar 

  281. Cohen A. Current status of iron chelation therapy with desferrioxamine. Semin Hematol 1990; 27: 86–90

    PubMed  CAS  Google Scholar 

  282. Ben-Schachar D, Youdim MBH. Iron, melanin and dopamine interaction: relevance to Parkinson’s disease. Prog Neuropsychopharmacol 1993; 17: 139–50

    Google Scholar 

  283. Soriani M, Mazzuca S, Quaresima V, et al. Oxidation of desferrioxamine to nitroxide free radical by activated human neutrophils. Free Radic Biol Med 1993; 14: 589–99

    PubMed  CAS  Google Scholar 

  284. Hartley A, Davies M, Rice-Evans C. Desferrioxamine as a lipid chain-breaking antioxidant in sickle erythrocyte membranes. FEBS Lett 1990; 264: 145–8

    PubMed  CAS  Google Scholar 

  285. Darley-Usmar VM, Hersey A, Garland LG. A method for the comparative assessment of antioxidants as peroxyl radical scavengers. Biochem Pharmacol 1989; 38: 1465–9

    PubMed  CAS  Google Scholar 

  286. Denicola A, Souza JM, Gatti RM, et al. Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite: role of the hydroxamic groups. Free Radic Biol Med 1995; 19: 11–9

    PubMed  CAS  Google Scholar 

  287. Braughler JM, Hall ED, Jacobsen EJ, et al. The 21-aminosteroids: potent inhibitors of lipid peroxidation for the treatment of central nervous system trauma and ischemia. Drugs Future 1989; 14: 143–52

    Google Scholar 

  288. Braughler JM, Pregenzer JF. The 21-aminosteroid inhibitors of lipid peroxidation: reactions with lipid peroxyl and phenoxyl radicals. Free Radic Biol Med 1989; 7: 125–30

    PubMed  CAS  Google Scholar 

  289. Hall ED, McCall JM. Lazaroids: potent lipid peroxidation inhibitors of iron-dependent lipid peroxidation for neurodegenerative disorders. In: Riederer P, Youdim MBH, editors. Iron in central nervous system disorders. Vienna: Springer Verlag, 1993: 173–88

    Google Scholar 

  290. Smith DH, Gennarelli TA, Mcintosh TK. The potential of 21-aminosteroids (lazaroids) as neuroprotective therapies in CNS injury. CNS Drugs 1995; 3: 159–64

    Google Scholar 

  291. Clark WM, Hazel JS, Coull BM. Lazaroids: CNS pharmacology and current research. Drugs 1995; 50: 971–83

    PubMed  CAS  Google Scholar 

  292. Villa RF, Gorini A. Pharmacology of lazaroids and brain energy metabolism: a review. Pharmacol Rev 1997; 49: 99–136

    PubMed  CAS  Google Scholar 

  293. Grasbon-Frodl EM, Nakao N, Brundin P. The lazaroid U-83836E improves the survival of rat embryonic mesencephalic tissue stored at 4°C and subsequently used for cultures or intracerebral transplantation. Brain Res Bull 1996; 39: 341–8

    PubMed  CAS  Google Scholar 

  294. Grasbon-Frodl EM, Andersson A, Brundin P. Lazaroid treatment prevents death of cultured rat embryonic mesencephalic neurons following glutathione depletion. J Neurochem 1996; 67: 1653–60

    PubMed  CAS  Google Scholar 

  295. Grasbon-Frodl EM, Brundin P. Dopamin neuron death induced by congeners of nitrogen monoxide is prevented by the lazaroid U-83836E. Exp Brain Res 1997; 113: 138–43

    PubMed  CAS  Google Scholar 

  296. Frodl EM, Nakao N, Brundin P. Lazaroids improve the survival of cultured rat embryonic mesencephalic neurons. Neuroreport 1994; 5: 2393–6

    PubMed  CAS  Google Scholar 

  297. Nakao M, Frodl EM, Duan WM, et al. Lazaroids improve the survival of grafted rat embryonic dopamine neurons. Proc Natl Acad Sci U S A 1994; 91: 12408–12

    PubMed  CAS  Google Scholar 

  298. Björklund L, Vidal N, Stromberg I. Lazaroid-enhanced survival of grafted dopamine neurons does not increase target innervation. Neuroreport 1998; 9: 2815–9

    PubMed  Google Scholar 

  299. Nakao N, Frodl EM, Widner H, et al. Over-expressing Cu/Zn Superoxide dismutase enhances survival of transplanted neurons in a rat model of Parkinson’s disease. Nature Med 1995; 1: 226–31

    PubMed  CAS  Google Scholar 

  300. Othberg, Keep M, Brundin P, et al. Tirilazad mesylate improves survival of rat and human embryonic mesencephalic neurons in vitro. Exp Neurol 1997; 147: 498–502

    PubMed  CAS  Google Scholar 

  301. Zhao WG, Richardson JS, Mombourquette MJ, et al. An in vitro EPR study of the free-radical scavenging actions of the lazaroid antioxidants U-74500A and U-78517F. Free Radic Biol Med 1995; 19: 21–30

    PubMed  CAS  Google Scholar 

  302. Wesemann W, Soibach M, Nafe R, et al. Effect of lazaroid U-74389G on iron-induced reduction of striatal dopamine metabolism. J Neural Transm 1995; Suppl. 46: 175–82

    Google Scholar 

  303. Kupsch A, Gerlach M, Pupeter SC, et al. Pretreatment with nimodipine prevents MPTP-induced neurotoxicity at the nigral, but not at the striatal level in mice. Neuroreport 1995; 6: 621–5

    PubMed  CAS  Google Scholar 

  304. Wilson JX. Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 1997; 75: 1149–63

    PubMed  CAS  Google Scholar 

  305. Jameson GNL, Linert W. 6-hydroxydopamine, dopamine and ferritin: a cycle of reactions sustaining Parkinson’s disease. In: Pli G, Cadenas E, Packer L, editors. Free radicals in brain pathophysiology. New York: Marcel Dekker. In press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt A. Jellinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jellinger, K.A. The Role of Iron in Neurodegeneration. Drugs Aging 14, 115–140 (1999). https://doi.org/10.2165/00002512-199914020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199914020-00004

Keywords

Navigation