We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Skip main navigation
Aging Health
Bioelectronics in Medicine
Biomarkers in Medicine
Breast Cancer Management
CNS Oncology
Colorectal Cancer
Concussion
Epigenomics
Future Cardiology
Future Medicine AI
Future Microbiology
Future Neurology
Future Oncology
Future Rare Diseases
Future Virology
Hepatic Oncology
HIV Therapy
Immunotherapy
International Journal of Endocrine Oncology
International Journal of Hematologic Oncology
Journal of 3D Printing in Medicine
Lung Cancer Management
Melanoma Management
Nanomedicine
Neurodegenerative Disease Management
Pain Management
Pediatric Health
Personalized Medicine
Pharmacogenomics
Regenerative Medicine

Treatment options for recurrent high-grade gliomas

    Harjus S Birk

    Department of Neurological Surgery, University of California, San Francisco, CA, USA

    ,
    Seunggu J Han

    Department of Neurological Surgery, University of California, San Francisco, CA, USA

    &
    Nicholas A Butowski

    *Author for correspondence:

    E-mail Address: nicholas.butowski@ucsf.edu

    Department of Neurological Surgery, University of California, San Francisco, CA, USA

    Published Online:https://doi.org/10.2217/cns-2016-0013

    High-grade gliomas are aggressive brain tumors encompassing Grade III and IV classifications. Of these, glioblastoma (GB) is the most malignant with a high rate of recurrence after initial resection. Although standard treatment does exist for newly diagnosed GBs, therapeutic strategies for recurrent GB are less solidified. However, mounting evidence describes the role of re-resection, bevacizumab, chemotherapy, targeted molecular therapies, immunotherapeutic approaches and radiotherapy in recurrent GB management. This review article provides analysis of the aforementioned therapies, through assessing their effect on overall survival. Because GB tumor heterogeneity is prevalent there is a constant need to investigate therapies targeting recurrence. Studies evaluating both therapeutic targets and strategies for high-grade gliomas are and will remain invaluable.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Pranckeviciene A, Bunevicius A. Depression screening in patients with brain tumors: a review. CNS Oncol. 4(2), 71–78 (2015).
    • 2 Apuzzo MLJ. Malignant Cerebral Glioma. American Association of Neurological Surgeons, Park Ridge, USA, 79–89 (1990).
    • 3 Furnari FB, Fenton T, Bachoo RM et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21(21), 2683–2710 (2007).
    • 4 Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer 110(1), 13–24 (2007).
    • 5 Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005). •• Seminal article describing the establishment of a standard treatment for glioblastoma (GB) consisting of concomitant chemoradiotherapy with temozolomide (TMZ) followed by 6–12 cycles of adjuvant TMZ.
    • 6 Davis FG, Freels S, Grutsch J et al. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973–1991. J. Neurosurg. 88, 1–10 (1998).
    • 7 Kleihues P, Sobin LH. World Health Organization classification of tumors. Cancer 88, 2887 (2000).
    • 8 National Comprehensive Cancer Network. NCCN guidelines: central nervous system cancers. www.nccn.org/professionals/physician_gls/f_guidelines.asp.
    • 9 Ammirati M, Galicich JH, Arbit E, Liao Y. Reoperation in the treatment of recurrent intracranial malignant gliomas. Neurosurgery 21, 607–614 (1987).
    • 10 Hervey-Jumper SL, Berger MS. Reoperation for recurrent high-grade glioma: a current perspective of the literature. Neurosurgery 75(5), 491–499 (2014). •• A large scale systematic review analyzing efficacy of re-resection for GB.
    • 11 Barbagallo GM, Jenkinson MD, Brodbelt AR. Recurrent glioblastoma multiforme – when should we reoperate? Br. J. Neurosurg. 22(3), 452–455 (2008). • Study indicating specific factors such as age and tumor volume that contribute to increased likelihood of survival time prolongation after re-resection of GB.
    • 12 Park JK, Hodges T, Arko L et al. Scale to predict survival after surgery for recurrent glioblastoma multiforme. J. Clin. Oncol. 28(24), 3838–3843 (2010).
    • 13 Pinsker M, Lament C. Experiences with reoperation on recurrent GBM. Zentralbl. Neurochir. 62(2), 43–47 (2001).
    • 14 Weller M, Cloughesy T, Perry JR, Wick W. Standards of care for treatment of recurrent glioblastoma – are we there yet? Neuro Oncol. 15(1), 4–27 (2013).
    • 15 Franceschi E, Bartolotti M, Tosoni A et al. The effect of re-operation on survival in patients with recurrent glioblastoma. Anticancer Res. 35(3), 1743–1748 (2015).
    • 16 Mandl ES, Dirven CM, Buis DR et al. Repeated surgery for glioblastoma multiforme: only in combination with other salvage therapy. Surg. Neurol. 69(5), 506–509 (2008).
    • 17 Bloch O, Han SJ, Cha S et al. Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article. J. Neurosurg. 117(6), 1032–1038 (2012).
    • 18 Oppenlander ME, Wolf AB, Snyder LA et al. An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J. Neurosurg. 120(4), 846–853 (2014).
    • 19 Miller K, Wang M, Gralow J et al. Paclitaxel plus bavacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 257(26), 2666–2676 (2007).
    • 20 Saltz LB, Clarke S, Diaz-Rubio E et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized Phase III study. J. Clin. Oncol. 26(12), 2013–2019 (2008).
    • 21 Hurwitz H, Fehrenbacher L, Novotny W et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350(23), 2335–2342 (2004).
    • 22 Friedman HS, Prados MD, Wen PY et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 27(28), 4733–4740 (2009).
    • 23 Kreisl TN, Kim L, Moore K et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27(5), 740–745 (2009).
    • 24 Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25(30), 4722–4729 (2007).
    • 25 Nghiemphu PL, Liu W, Lee Y et al. Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 72(14), 1217–1222 (2009).
    • 26 Taal W, Oosterkamp HM, Walenkamp AM et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled Phase II trial. Lancet Oncol. 15(9), 943–953 (2014). •• The first randomized controlled Phase II trial of bevacizumab therapy in recurrent GB evaluating its efficacy versus CCNU monotherapy (lomustine) and combination therapy.
    • 27 Forst D, Neagu M, Eisele S. SNO 2015: new clinical research presentations. Presented at: 20th Annual Scientific Meeting of the Society for Neuro-Oncology. San Antonio, TX, USA, 19–22 November 2015.
    • 28 McCarty JH. Glioblastoma resistance to anti-VEGF therapy: has the challenge been MET? Clin. Cancer Res. 19(7), 1631–1633 (2013).
    • 29 Keunen O, Johansson M, Odin A. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc. Natl Acad. Sci. USA 108(9), 3749–3754 (2011).
    • 30 Chamberlain MC. Salvage chemotherapy with CPT-11 for recurrent GBM. J. Neurooncol. 56(2), 183–188 (2002).
    • 31 Prados MD, Lamborn K, Yung WK et al. A Phase 2 trial of irinotecan (CPT-11) in patients with recurrent malignant glioma: a North American Brain Tumor Consortium study. Neuro Oncol. 8(2), 189–193 (2005).
    • 32 Perry JR, Rizek P, Cashman R et al. Temozolomide rechallenge in recurrent malignant glioma by using a continuous temozolomide schedule: the “rescue” approach. Cancer 113(8), 2152–2157 (2008).
    • 33 Wick A, Pascher C, Wick W et al. Rechallenge with temozolomide in patients with recurrent gliomas. J. Neurol. 256(5), 734–741 (2009). • Unique study suggesting TMZ rechallenge monotherapy is a promising therapeutic for management of recurrent GB.
    • 34 Brada M, Hoang-Xuan K, Rampling R et al. Multicenter Phase II trial of temozolomide in patients with glioblastoma multiforme at first relapse. Ann. Oncol. 12(2), 259–266 (2001).
    • 35 Brandes AA, Ermani M, Basso et al. Temozolomide as a second-line systemic regimen in recurrent high-grade glioma: a Phase II study. Ann. Oncol. 12(2), 255–257 (2001).
    • 36 Han SJ, Rolston JD, Molinari AM et al. Phase II trial of 7 days on/7 days off temozolomide for recurrent high-grade glioma. Neuro Oncol. 16(9), 1255–1262 (2014).
    • 37 Rich JN, Reardon DA, Peery T et al. Phase II trial of gefitinib in recurrent glioblastoma. J. Clin. Oncol. 22(1), 133–142 (2004).
    • 38 Uhm JH, Ballman KV, Wu W et al. Phase II study of ZD1839 in patients with newly diagnosed grade 4 astrocytoma. Int. J. Radiat. Oncol. Biol. Phys. 80(2), 347–353 (2011).
    • 39 van den Bent MJ, Brandes AA, Rampling R et al. Randomized Phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J. Clin. Oncol. 27(8), 1268–1274 (2009).
    • 40 Chen L, Han L, Shi Z et al. LY294002 enhances cytotoxicity of temozolomide in glioma by down-regulation of the PI3K/Akt pathway. Mol. Med. Rep. 5, 575–579 (2012).
    • 41 Wollmann G, Ozduman K, van den Pol AN. Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates. Cancer J. 18(1), 69–81 (2012).
    • 42 Ampie L, Choy W, Lamano JB et al. Heat shock protein vaccines against glioblastoma: from bench to bedsire. J. Neurooncol. 123(3), 441–448 (2015).
    • 43 Bloch O, Crane CA, Fuks Y et al. Heat-shock protein peptide complex-96 vaccination for recurrent GBM: a Phase II, single-arm trial. Neuro Oncol. 16(2), 274–279 (2014).
    • 44 Swartz AM, Li QJ, Sampson JH. Rindopepimut: a promising immunotherapeutic for the treatment of GBM. Immunotherapy 6(6), 679–690 (2014). • A randomized controlled Phase II study revealing efficacy of novel immunotherapeutic Rintega when combined with bevacizumab for GB treatment.
    • 45 Schumacher T, Bunse L, Pusch S et al. A vaccine targeting mutant IDH1 induces antitumor immunity. Nature 512, 324–327 (2014).
    • 46 Dimitrov L, Hong CS, Yang C et al. New developments in the pathogenesis and therapeutic targeting of the IDH1 mutation in glioma. Int. J. Med. Sci. 12(3), 201–213 (2015).
    • 47 Hdeib A, Sloan AE. Dendritic cell immunotherapy for solid tumors: evaluation of the DCVax platform in the treatment of GBM. CNS Oncol. 4(2), 63–69 (2012).
    • 48 Skeie BS, Enger PO, Brogger J et al. Gamma knife surgery versus reoperation for recurrent glioblastoma multiforme. World Neurosurg. 78(6), 658–669 (2012).
    • 49 Shrieve DC, Alexander E III, Wen PY et al. Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 36, 275–284 (1995).
    • 50 Kunwar S, Chang S, Westphal M et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol. 12(8), 871–881 (2010).
    • 51 Chicoine MR, Won EK, Zahner MC. Intratumoral injection of lipopolysaccharide causes regression of subcutaneously implanted mouse glioblastoma multiforme. Neurosurgery 48(3), 607–614 (2001).