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Abstract

We propose ENCASE to combine expert features and
DNNs (Deep Neural Networks) together for ECG classifi-
cation. We first explore and implement expert features from
statistical area, signal processing area and medical area.
Then, we build DNNs to automatically extract deep fea-
tures. Besides, we propose a new algorithm to find the most
representative wave (called centerwave) among long ECG
record, and extract features from centerwave. Finally, we
combine these features together and put them into ensem-
ble classifiers. Experiment on 4-class ECG data classifica-
tion reports 0.84 Fy score, which is much better than any
of the single model.

1. Introduction

ECG is a common non-invasive measurement that can
reflect the physiology activities of heart. A typical 12-lead
300 Hz ECG monitor can produce hundreds of millions of
points of each patient. Analyzing large scale ECG data can
help physicians to detect many heart diseases like atrial
fibrillation, myocardial infarction, acute hypotensive and
SO on.

There are many existing researches that propose vari-
ous kinds of features and achieves high detection accu-
racy [1] 2] [3] [4]. These features are highly related to
domain knowledge so that we call them expert features.
Recently, DNNs (Deep Neural Networks) have achieved
state-of-the-art results in many areas like image classifi-
cation, audio recognition and natural language procession.
Some researches that classify ECG data with DNNs also
have achieve good results [S]] [6]. However, there lack of
work that combine them together for ECG data classifica-
tion.

In this paper, We propose ENCASE, an ensemble clas-
sifier for ECG classification using combinations of various
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kinds of features. We first explore and implement expert
features from large amount of formal literature. These fea-
tures can be roughly divided into three groups: statistical
features, signal processing features and medical features.
Then, we build DNNs to automatically extract deep fea-
tures. We pre-train DNNs on the training data, feed the
testing data and extract the last hidden layer as deep fea-
tures. Besides, we propose a new algorithm to find center-
wave — the most representative wave among ECG waves of
one patient. And extract features from centerwave. Finally,
we combine expert features, deep features and centerwave
features together, train several gradient decision boosting
tree classifiers, and ensemble these classifiers together to
output predictions. Experiment on 4-class ECG data clas-
sification reports 0.84 F} score, which is much better than
any of the single model. We also report information gain
with the help of XGBoost [7]], which reveal the importance
and interpretation of these features.

ENCASE is a general and flexible framework. It can
add features incrementally, equip any DNNs, and ensem-
ble any classifier. It can also detect more classes of heart
disease if providing more data. Thus, ENCASE can be
used in real world applications.

2. Methods

2.1. Data Description and Preprocessing

The dataset containing 8528 records of short 1-lead 300
Hz ECG recordings, varying length from 2700 points to
18300 points. These records are labeled with 4 classes:
normal sinus rhythm (N, 5154 records), atrial fibrillation
(A, 771 records), alternative rhythm (O, 2557 records) and
noise (P, 46 records). Details can be found in [8]].

Before feature extraction, we preprocess raw data to get
the following five kind of data:

« Long data: We use tool from sample code to read them
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into numeric time series, and save raw values by records
directly.

« Short data: We split the long data into short waves us-
ing QRS detector by Joachim Behar from sample code.
Further improvement of QRS detector is introduced in Sec-
tion 2.4

o QRS data: We calculate the length of consecutive QRS
interval of each long data.

o Centerwave: The most representative wave among
short data of each long data. Details are introduced in Sec-
tion

« Expanded data: Expanding to get more data using slide
window and stride. In this paper, we choose window size
6000, strides are chosen dynamically for balanced dataset,
detail are introduced in Section 2.4

2.2. Features Extraction

In this section, we will introduce three kind of feature
extractors in detail: expert features, centerwave features
and deep features.

2.2.1. Expert Features

There are large amount of researches about extracting
features for ECG data analyzing. Roughly speaking, these
features can be divide into three groups.

« Statistical features: These features use statistic to sum-
marize a sequence of ECG data, and give values that de-
scribe some characteristic of the data. Typical statistic
including count, mean, maximum, minimum, range, vari-
ance, skewness, kurtosis, percentile and so on.

« Signal procession features: These features first trans-
form ECG data from time domain into frequency do-
main, then extract frequency related features. For example,
one may first implement FFT (Fast Fourier Transform),
or DWT (Discrete Wavelet Transform). And then com-
pute power, frequency band power, Shannon entropy, SNR
(Signal Noise Ratio) and so on.

o Medical features: These features are base on medical
domain knowledge. One group of features compute the
variation based on QRS data. For example, [1]] compute
the sample entropy (SampleEn), [2] compute the coeffi-
cient of variation and density histograms (CDF), [3] com-
pute the thresholding on the median absolute deviation
(MAD), [4] compute the heart rate variability (Variabil-
ity). Another group of features compute statistic based
on P, Q, R, S and T waves. We follow the wave detec-
tion method described in [[9]], then extract statistic features
from short data and centerwave like interval, duration, am-
plitude, location, slope and area [[10]. Moreover, we also
come up with some effective features like zig-zag (number
of turns in data), zero-crossing (number of cross y axis),
auto-correlation (with lags from 1 to 12).

2.2.2. Centerwave Features

In this part, we introduce centerwave — the most repre-
sentative wave among short data of one patient, and extract
features from it. The reasons comes from two aspects. On
the one hand, we observe that some of misclassified sam-
ples are contaminated by noises. Since the ECG data is not
much so long, noise filters can not handle it well. On the
other hand, some classes are controlled by the morphol-
ogy of the wave, not the overall rhythm. Find and analyze
the representative wave directly would give better perfor-
mance.

We find centerwave in three steps:

« Stepl: For each patient, calculate pairwise distance ma-
trix of his/her short data using DTW distance [11]. Since
each short data are of unequal length. To solve this, we use
to compute distance of unequal length time series.

« Step2: Group short waves into several clusters based on
distance matrix using spectral clustering [[12], where waves
are similar intra clusters, not much similar inter clusters.

« Step3: Find the center of the biggest cluster. This can be
done by treating distance matrix of the cluster as a graph,
where nodes represent short waves, edges represent dis-
tance between short waves. Then we find the graph center
— the node that is closest to other nodes, which means that
this short data is the most representative wave among all
short data.

Then we extract both statistical features and medical
features on the centerwave. Details can be found in Section
[2.2.1] Besides, we also treat raw values of centerwave as
features. However, these centerwaves don’t have the same
length. To solve this, we resample them by linear interpo-
lation. In our experiment, we resample all centerwaves to
200 points.

2.2.3. Deep Features

Recent works [5] [[6] have demonstrate the effectiveness
of DNNs on ECG classification. These DNNs have 1-D
CNN (1-Dimension Convolutional Neural Networks) lay-
ers that can naturally integrate and extract hierarchy fea-
tures automatically [[13]. However, these DNNs models are
end-to-end and hard to enhanced with extra expert features.
For the purpose of benefits from both features from DNNs
and expert. We transform DNNs models to deep feature
extractors. In detail, we remove the output layer, extract
values of last hidden layer as features. This transformation
is an general process that can be used in any DNNs. So we
can focus on the architecture of deep feature extractors.

The first deep feature extractor is based on a deep resid-
ual convolution networks [6] and is trained using expanded
data (see Section 2.I). We want to extract multi-view and
more accurate features by stacking more layers [[14]]. We
improve [6] by adding a Bi-directional LSTM layer and
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vote for result. The architecture is shown below:

Input: Expanded data
Conv, BN, ReLU
Conv, BN, ReLU, Dropout, Conv
BN, ReL.U, Dropout, Conv, BN, ReLU, Dropout, Conv
BN, ReLU, Dropout, Conv, BN, ReLU, Dropout, Conv
BN, ReLU, Dropout, Conv, BN, ReLU, Dropout, Conv
BN, ReL.U, Dropout, Conv, BN, ReLU, Dropout, Conv
BN, RelLU, Bi-directional LSTM
Dropout, Dense
Output: Deep Features (32 dim)

Table 1. The architecture of our improved deep residual
convolution feature extractor

The second deep feature extractor is based on RNNs
(Recurrent Neural Networks) and is trained using center-
wave (see Section [2.I). Specifically, we use LSTM (Long
Short-Term Memory) cell as basic RNN cell, Aside of
CNN models that can extract hierarchy features, we also
want to extract time related features, this can be done by
RNNs. And we take centerwave (less than 600 points)
as inputs, because long data is too long (more than 6000
points) for RNN. The architecture is shown below:

Input: Centerwave
Dynamic LSTM, Dense
Output: Deep Features (32 dim)

Table 2. The architecture of LSTM deep feature extractor

2.3. Ensemble Classifies with Feature Com-
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Now we have expert features, centerwave features and
deep features. We concatenate three part of feature vec-
tors into one combined feature vector, train several individ-
ual classifiers, and ensemble them by average the predicted
probabilities.

It has been shown that ensemble classifiers are often
much more accurate than the individual classifiers that
make them up [15]. We also choose XGBoost [[7] (eX-
treme Gradient Boosting of decision trees) as individual
classifier. XGBoost has been verified in many data mining
contests that achieve better and more stable performance.

2.4. Improvement

There are some important processes that further improve
ENCASE performance.

Recursive QRS detector. There are two key parameters
in original QRS detector. THRES (energy threshold of the
detector) and REF_PERIOD (refractory period in sec be-
tween two R-peaks). The original QRS detector sometimes
output long sequence composed of several undivided QRS.
To handle this, we multiply THRES and REF_PERIOD
by factor of 0.68, each time the algorithm output segment
longer than 600 (twice of sample frequency), and apply
new QRS detector on the undivided long sequence.

Dynamic oversample. The given raw data is unbal-
anced that label N is much more than other labels. We
propose dynamic oversample to handle this. Specifically,
when generating expanded data for deep feature extractor,
we use small stride for label O and big stride for label N.
So that the modified expanded data are much more bal-
anced than raw data. The modified expanded data would
train a better deep feature extractor.

Model evaluation and selection. The typical offline
evaluation schema is to split the data into training data and
testing data, build the model on training data and evalu-
ate on testing data. For more accurate evaluation of EN-
CASE, we use k-fold cross validation to split the data it-
eratively, and run cross validation multiple times. The fi-
nal average F1 score would be more credible. We build
multiple ENCASE models with different setups to choose
the best model. The final ENCASE ensemble five XG-
Boost, and each XGBoost has 3000 trees with max_depth
=9, min_child_weight = 3.

3. Results

In this section, we first compare the effectiveness of dif-
ferent features, then we evaluate the performance of differ-
ent classifiers on the 4 classes ECG classification task.

3.1. Features Importance

We evaluate features importance by the average infor-
mation gain used in each decision trees. Results are shown
in Table[3
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Feature Type Total | Top-300 | Top-150 | Top-50 | Top-20
Expert Features: 106 74 49 10 1
Statistical
Expert Featurf.:s: 9 2 1 0 0
Signal procession
Expert Features:
Medical 185 101 45 14 2
Centerwave Features: 200 53 16 0 0
Raw
Centerwave Features: 53 16 4 0 0
Expert
Deep Features:
CNN 32 31 31 25 17
Deep Features:
RNN 32 18 4 1 0
Table 3. Rank of features importance

We can see that most statistical features and medical fea-
tures by experts are effective. It is worth nothing that deep
features from CNN and RNN are both significantly effec-
tive, deep CNN features even has 17 in Top-20.

3.2. Performance

We evaluate each method by run cross validation multi-
ple times. The measurements are F1 score related Details
can be found in [{8]. Results are shown in Table[d In Fea-
tures column, E stands for expert features, C stands for
centerwave features, D stands for deep features.

Method Features/Data | Fin Fia Fio Fip Fy F1 nao
|1 SampleEn 0.7502 | 0.3874 | 0.0030 | 0.0003 | 0.2852 0.3802
12 CDF 0.7961 | 0.2893 | 0.3093 | 0.0433 | 0.3595 | 0.4649
13 MAD 0.7822 | 0.0257 | 0.1812 | 0.0003 | 0.2474 0.3297
|4 Variability 0.8321 | 0.5231 | 0.3681 | 0.0093 | 0.4332 | 0.5714
ResNet [6 Expanded Data | 0.7846 | 0.8643 | 0.6887 | 0.7317 | 0.7673 0.7792
ResNet Improved - 0.9138 | 0.8060 | 0.7728 | 0.5000 | 0.7481 0.8309
E 0.8843 | 0.7312 | 0.6852 | 0.5441 | 0.7112 | 0.7669
LR E+C 0.8854 | 0.7353 | 0.6885 | 0.5700 | 0.7198 0.7697
E+C+D 0.9095 | 0.8408 | 0.7714 | 0.6652 | 0.7967 0.8406
E 0.9031 | 0.7756 | 0.7445 | 0.6428 | 0.7665 | 0.8077
XGBoost E+C 0.9053 | 0.7770 | 0.7538 | 0.6354 | 0.7679 0.8120
E+C+D 0.9207 | 0.8667 | 0.8074 | 0.8061 | 0.8502 | 0.8649
E 0.9059 | 0.7908 | 0.7543 | 0.6574 | 0.7771 0.8170
ENCASE E+C 0.9086 | 0.7899 | 0.7622 | 0.6603 | 0.7803 0.8202
E+C+D 0.9204 | 0.8692 | 0.8068 | 0.8156 | 0.8530 | 0.8655
ENCASE E+C 0.92 0.84 0.74 - - 0.83
Online E+C+D 0.92 0.85 0.74 - 0.83 0.84

Table 4. Results of different methods

We can see that ENCASE performs better than other
methods. Notice that label P is so unbalanced that would
lead to unstable result. More reasonable measurement
should be F'| a0 which not consider F} p.

4. Conclusion

In this paper, we propose an ensemble classifier EN-
CASE to combine expert features, centerwave features and
deep features together for ECG classification. ENCASE
is a flexible framework that supports incremental features
extraction and classifier updating. Experiments shows that
ENCASE performs better than other methods.
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