[1-13C]glucose MRS in chronic hepatic encephalopathy in man

Magn Reson Med. 2001 Jun;45(6):981-93. doi: 10.1002/mrm.1131.

Abstract

[1-13C]-labeled glucose was infused intravenously in a single dose of 0.2 g/kg body weight over 15 min in six patients with chronic hepatic encephalopathy, and three controls. Serial 13C MR spectra of the brain were acquired. Patients exhibited the following characteristics relative to normal controls: 1) Cerebral glutamine concentration was increased (12.6 +/- 3.8 vs. 6.5 +/- 1.9 mmol/kg, P < 0.006) and glutamate was reduced (8.2 +/- 1.0 vs. 9.9 +/- 0.6 mmol/kg, P < 0.02). 2) 13C incorporation into glutamate C4 and C2 positions was reduced in patients (80 min after start of infusion C4: 0.43 +/- 0.09 vs. 0.84 +/- 0.15 mmol/kg, P < 0.001; C2: 0.20 +/- 0.03 vs. 0.45 +/- 0.07 mmol/kg, P < 0.0001). 3) 13C incorporation into bicarbonate was delayed (90 +/- 21 vs. 40 +/- 10 min, P < 0.003), and the time interval between detection of glutamate C4 and C2 labeling was longer in patients (22 +/- 8 vs. 12 +/- 3 min, P < 0.03). 4) Glutamate C2 turnover time was reduced in chronic hepatic encephalopathy (17.1 +/- 6.8 vs. 49.6 +/- 8.7 min, P < 0.0002). 5) 13C accumulation into glutamine C2 relative to its substrate glutamate C2 increased progressively with the severity of clinical symptoms (r = 0.96, P < 0.01). These data indicate disturbed neurotransmitter glutamate/glutamine cycling and reduced glucose oxidation in chronic hepatic encephalopathy. [1-13C] glucose MRS provides novel insights into disease progression and the pathophysiology of chronic hepatic encephalopathy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Blood Glucose / metabolism*
  • Brain / pathology*
  • Carbon Isotopes
  • Female
  • Glutamic Acid / metabolism*
  • Glutamine / metabolism*
  • Hepatic Encephalopathy / diagnosis*
  • Hepatic Encephalopathy / pathology
  • Humans
  • Magnetic Resonance Spectroscopy*
  • Male
  • Middle Aged
  • Synaptic Transmission / physiology

Substances

  • Blood Glucose
  • Carbon Isotopes
  • Glutamine
  • Glutamic Acid