Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla

Eur Radiol. 2010 Jul;20(7):1675-83. doi: 10.1007/s00330-009-1705-y. Epub 2010 Jan 22.

Abstract

Objective: To investigate the impact of a higher magnetic field strength of 3 Tesla (T) on the detection rate of cortical lesions in multiple sclerosis (MS) patients, in particular using a dedicated double inversion recovery (DIR) pulse sequence.

Methods: Thirty-four patients with clinically isolated syndromes or definite MS were included. All patients underwent magnetic resonance imaging (MRI) at 1.5 T and 3 T, including T2-weighted turbo spin echo (TSE), fluid-attenuated inversion recovery (FLAIR) and DIR sequences. All images were analysed for focal lesions categorised according to their anatomical location.

Results: The total number of detected lesions was higher at 3 T across all pulse sequences. We observed significantly higher numbers of lesions involving the cortex at 3 T using a DIR sequence. DIR at 3 T showed 192% more pure intracortical (p < 0.001) and 30% more mixed grey matter-white matter lesions (p = 0.008). No significant increase in cortical lesions could be detected on the FLAIR and T2-weighted images. Using the T2-weighted and FLAIR sequences, significantly more lesions could be detected at 3 T in the infratentorial, periventricular and juxtacortical white matter.

Conclusion: DIR brain MR imaging at 3 T substantially improves the sensitivity of the detection of cortical lesions compared with the standard magnetic field strength of 1.5 T.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Cerebral Cortex / pathology*
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Multiple Sclerosis / diagnosis*
  • Multiple Sclerosis / pathology
  • Reference Standards