Fully automated intracranial ventricle segmentation on CT with 2D regional convolutional neural network to estimate ventricular volume

Int J Comput Assist Radiol Surg. 2019 Nov;14(11):1923-1932. doi: 10.1007/s11548-019-02038-5. Epub 2019 Jul 26.

Abstract

Purpose: Hydrocephalus is a clinically significant condition which can have devastating consequences if left untreated. Currently available methods for quantifying this condition using CT imaging are unreliable and prone to error. The purpose of this study is to investigate the clinical utility of using convolutional neural networks to calculate ventricular volume and explore limitations.

Methods: A two-dimensional convolutional neural network was designed to perform fully automated ventricular segmentation on CT images. A total of 300 head CTs were collected and used in this exploration. Two hundred were used to train the network, 50 were used for validation, and 50 were used for testing.

Results: Dice scores for the left lateral, right lateral, and third ventricle segmentations were 0.92, 0.92, and 0.79, respectively; the coefficients of determination were r2 = 0.991, r2 = 0.994, and r2 = 0.976; the average volume differences between manual and automated segmentation were 0.821 ml, 0.587 ml, and 0.099 ml.

Conclusion: Two-dimensional convolutional neural network architectures can be used to accurately segment and quantify intracranial ventricle volume. While further refinements are necessary, it is likely these networks could be used as a clinical tool to quantify hydrocephalus accurately and efficiently.

Keywords: Automated segmentation; Convolutional neural network (CNN); Intracranial ventricle volume; Machine learning; U-Net.

MeSH terms

  • Cerebral Ventricles / diagnostic imaging*
  • Humans
  • Neural Networks, Computer*
  • Organ Size
  • Retrospective Studies
  • Tomography, X-Ray Computed / methods*