Region-specific sex differences in the hippocampus

Neuroimage. 2020 Jul 15:215:116781. doi: 10.1016/j.neuroimage.2020.116781. Epub 2020 Apr 9.

Abstract

The hippocampus is a brain region critical for learning and memory, and is also implicated in several neuropsychiatric disorders that show sex differences in prevalence, symptom expression, and mean age of onset. On average, males have larger hippocampal volumes than females, but findings are inconclusive after adjusting for overall brain size. Although the hippocampus is a heterogenous structure, few studies have focused on sex differences in the hippocampal subfields - with little consensus on whether there are regionally specific sex differences in the hippocampus after adjusting for brain size, or whether it is important to adjust for total hippocampal volume (HPV). Here, using two young adult cohorts from the Queensland Twin IMaging study (QTIM; N ​= ​727) and the Human Connectome Project (HCP; N ​= ​960), we examined differences between males and females in the volumes of 12 hippocampal subfields, extracted using FreeSurfer 6.0. After adjusting the subfield volumes for either HPV or brain size (brain segmentation volume (BSV)) using four controlling methods (allometric, covariate, residual and matching), we estimated the percentage difference of the sex effect (males versus females) and Cohen's d using hierarchical general linear models. Males had larger volumes compared to females in the parasubiculum (up to 6.04%; Cohen's d ​= ​0.46) and fimbria (up to 8.75%; d ​= ​0.54) after adjusting for HPV. These sex differences were robust across the two cohorts and multiple controlling methods, though within cohort effect sizes were larger for the matched approach, due to the smaller sub-sample. Additional sex effects were identified in the HCP cohort and combined (QTIM and HCP) sample (hippocampal fissure (up to 6.79%), presubiculum (up to 3.08%), and hippocampal tail (up to -0.23%)). In contrast, no sex differences were detected for the volume of the cornu ammonis (CA)2/3, CA4, Hippocampus-Amygdala Transition Area (HATA), or the granule cell layer of the dentate gyrus (GCDG). These findings show that, independent of differences in HPV, there are regionally specific sex differences in the hippocampus, which may be most prominent in the fimbria and parasubiculum. Further, given sex differences were less consistent across cohorts after controlling for BSV, adjusting for HPV rather than BSV may benefit future studies. This work may help in disentangling sex effects, and provide a better understanding of the implications of sex differences for behaviour and neuropsychiatric disorders.

Keywords: Controlling methods; Gender; Hippocampal subfields; Hippocampus; Sex; Volume.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Twin Study

MeSH terms

  • Adult
  • Connectome
  • Female
  • Hippocampus / anatomy & histology*
  • Hippocampus / diagnostic imaging
  • Hippocampus / physiology*
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Organ Size
  • Sex Characteristics*
  • Twins
  • Young Adult