Identification of key methylation differentially expressed genes in posterior fossa ependymoma based on epigenomic and transcriptome analysis

J Transl Med. 2021 Apr 26;19(1):174. doi: 10.1186/s12967-021-02834-1.

Abstract

Background: Posterior fossa ependymoma (EPN-PF) can be classified into Group A posterior fossa ependymoma (EPN-PFA) and Group B posterior fossa ependymoma (EPN-PFB) according to DNA CpG island methylation profile status and gene expression. EPN-PFA usually occurs in children younger than 5 years and has a poor prognosis.

Methods: Using epigenome and transcriptome microarray data, a multi-component weighted gene co-expression network analysis (WGCNA) was used to systematically identify the hub genes of EPN-PF. We downloaded two microarray datasets (GSE66354 and GSE114523) from the Gene Expression Omnibus (GEO) database. The Limma R package was used to identify differentially expressed genes (DEGs), and ChAMP R was used to analyze the differential methylation genes (DMGs) between EPN-PFA and EPN-PFB. GO and KEGG enrichment analyses were performed using the Metascape database.

Results: GO analysis showed that enriched genes were significantly enriched in the extracellular matrix organization, adaptive immune response, membrane raft, focal adhesion, NF-kappa B pathway, and axon guidance, as suggested by KEGG analysis. Through WGCNA, we found that MEblue had a significant correlation with EPN-PF (R = 0.69, P = 1 × 10-08) and selected the 180 hub genes in the blue module. By comparing the DEGs, DMGs, and hub genes in the co-expression network, we identified five hypermethylated, lower expressed genes in EPN-PFA (ATP4B, CCDC151, DMKN, SCN4B, and TUBA4B), and three of them were confirmed by IHC.

Conclusion: ssGSEA and GSVA analysis indicated that these five hub genes could lead to poor prognosis by inducing hypoxia, PI3K-Akt-mTOR, and TNFα-NFKB pathways. Further study of these dysmethylated hub genes in EPN-PF and the pathways they participate in may provides new ideas for EPN-PF treatment.

Keywords: Differential genes; Epigenome; Posterior fossa ependymoma; Transcriptome; WGCNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Child
  • Ependymoma* / genetics
  • Epigenomics*
  • Gene Expression Profiling
  • Humans
  • Methylation
  • Phosphatidylinositol 3-Kinases
  • Transcriptome / genetics