Olfactory event-related potentials in normal human subjects: effects of age and gender

Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):293-301. doi: 10.1016/0013-4694(95)00055-4.

Abstract

Behavioral and electrophysiological testing of olfactory function was performed in 33 normal human male and female subjects, 18-83 years of age. Acuity for odor identification and odor detection was verified by standard psychophysical tests. For evoked potential testing, a constant flow olfactometer provided odorant stimuli (amyl acetate) or air control stimuli that were presented to the right nostril by a nasal cannula at a flow rate of 5 l/min, duration of 40 msec and random interstimulus intervals of 6-30 sec. The behavioral tests revealed no significant difference between males and females, whereas increasing age was associated with a decline in performance on the odor identification test. No reproducible evoked potentials were recorded in response to the air control stimulus. Potentials to the odorant stimulus consisted of 4 components named P1, N1, P2 and N2. A significant correlation was found between P2 latency and odor identification test scores, suggesting a relationship between the generation of the P2 component and olfactory processing. P2 peak latency increased significantly with age at 2.5 msec/year. An age-related decline in N1-P2 interpeak amplitude was seen in male subjects. Topographic differences were seen in the P2 peak amplitude and the N1-P2 and P2-N2 interpeak amplitudes such that their amplitudes were greatest at Cz and Pz. On average, N1-P2 interpeak amplitudes were larger in the female subjects than in the male subjects, possibly revealing a hormonal influence on the olfactory event-related potential.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Age Factors
  • Aged
  • Aged, 80 and over
  • Evoked Potentials / physiology*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Olfactory Pathways / physiology*
  • Reference Values
  • Sex Factors
  • Smell / physiology