Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Research ArticleINTERVENTIONAL

Distal Superior Cerebellar Artery Aneurysm Presenting with Cerebellar Infarction: Report of Two Cases

Maria Danet, Jean Raymond and Daniel Roy
American Journal of Neuroradiology April 2001, 22 (4) 717-720;
Maria Danet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean Raymond
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel Roy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Abstract

Summary: We report two cases of aneurysm of the distal branches of the superior cerebellar artery presenting with cerebellar infarction. In both cases, the diagnosis required close correlation of the findings from different imaging techniques, as catheter angiography failed to opacify the lesions. In one patient endovascular parent vessel occlusion was performed, whereas in the second patient the aneurysm thrombosed spontaneously. We describe the clinical and radiologic presentation of these aneurysms and discuss their pathogenesis, diagnosis, and treatment.

Aneurysms involving the peripheral portion of the superior cerebellar artery (SCA) are rare (1) and usually present with subarachnoid hemorrhage (SAH) (2, 3) or fourth nerve dysfunction (4–7). We report two patients with peripheral SCA aneurysms who presented with cerebellar ischemic events without SAH. Correct diagnosis was not readily made from selective angiography.

Case Reports

Case 1

Ten weeks after an uncomplicated delivery, a 27-year-old otherwise healthy woman, with no history of head trauma, had progressive onset of occipital and temporal headache. The day before admission she experienced numbness of the left side of her body, including her face, and slurred speech. Physical examination revealed mild hypoesthesia of the left inferior limb, painful hypoesthesia of the left side of the face, and slight left hyperreflexia. Initial unenhanced and enhanced CT studies showed a well-delineated 1-cm spontaneously hyperdense lesion with minimal enhancement located above the cerebellopontine angle (Fig 1A). There was no evidence of SAH. Hypodense foci suggestive of recent ischemia were visible in the right SCA territory. Left vertebral angiography showed sluggish flow within the right SCA but no aneurysm (Fig 1B). Supraselective injection of the right SCA (Fig 1C) revealed a fusiform aneurysm of the distal hemispheric branch of the SCA with distal occlusion of the branch. Owing to the possibility of spontaneous dissection, with potential risk of rupture, endovascular parent vessel occlusion was elected. A Fastracker-10 double-marker catheter (Target Therapeutics/Boston Scientific, Fremont, CA) was used to catheterize the aneurysm over a 0.010 guidewire (Terumo Corporation, Tokyo, Japan). A 2- × 8-mm Guglielmi detachable soft coil (Target Therapeutics) was delivered partly inside the aneurysm and partly into the parent artery. An immediate control angiogram (Fig 1D) showed total occlusion of the aneurysm and parent artery. The patient's condition improved, including resolution of the headache and of the left-sided hypoesthesia. An MR examination repeated 2 years later (Fig 1E) showed virtually complete disappearance of the aneurysmal mass.

fig 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
fig 1.

27-year-old woman with progressive onset of occipital and temporal headache.

A, Contrast-enhanced CT scan shows a well-delineated spontaneously hyperdense lesion with minimal enhancement located above the right cerebellopontine angle.

B, Left vertebral selective angiogram (anteroposterior view) shows slow opacification of the right SCA (arrow).

C, Right SCA supraselective injection shows the fusiform aneurysm of a distal hemispheric branch (arrow).

D, Same injection as in C after embolization shows obliteration of the aneurysm along with its parent artery (arrow points to the coil inside the aneurysm).

E, T2-weighted MR image 2 years after treatment shows the low signal intensity of the coil and almost complete disappearance of the mass.

Case 2

A 49-year-old man presented with a 2-day history of dizziness, slurred speech, right-hand incoordination, diplopia, and mild headache. He had no relevant medical history except for hypertension. There was no history of head trauma, although he reported a precipitous traumatic birth. Physical examination was within normal limits except for right-sided fourth cranial nerve palsy and slight right dysmetria. An initial enhanced CT scan (Fig 2A) showed a 7- × 7-mm round, hyperdense lesion in the ambient cistern suggestive of an aneurysm, and hypodensities in the right cerebellar hemisphere consistent with a recent infarct in the SCA territory. There was no evidence of SAH. MR imaging, performed the day after admission and 1 month later (Fig 2B), disclosed typical signals of blood degradation products within the lesion. Initial MR angiography revealed an absence of flow in the right SCA and no aneurysm, suggesting that the lesion seen on the CT scan was an already thrombosed aneurysm. MR images also showed three small cystic lesions on the right side of the midbrain with no edema or mass effect, as well as a recent infarct in the right SCA territory. Two vertebral angiograms were performed within a 10-day interval. Both angiograms showed complete occlusion of the right SCA at its origin (Fig 2C). Three months later, the patient still had fourth nerve palsy. MR follow-up at 10 months showed disappearance of the mass lesion (Fig 2D).

fig 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
fig 2.

49-year-old man with 2-day history of dizziness, slurred speech, right-hand incoordination, diplopia, and mild headache.

A, Contrast-enhanced CT scan shows an enhancing well-delineated extraaxial mass in the right ambient cistern. Cystic lesions are also visible within the right midbrain (arrow).

B, Left vertebral selective angiogram (anteroposterior view) shows complete occlusion of the right SCA at its origin (arrow).

C, Unenhanced T1-weighted MR image 1 month after presentation shows high signal intensities consistent with methemoglobin, which was also visible on T2-weighted images (not shown). Cystic lesions of the midbrain are also visible (arrow).

D, T2-weighted MR image 10 months after presentation shows disappearance of the mass. Cystic midbrain lesions are well shown.

Discussion

Clinical Manifestations

Most distal SCA aneurysms present with SAH (2, 3). Although rare, peripheral SCA aneurysms presenting with ischemia should be recognized to prevent SAH from an undiagnosed lesion. Distal posterior circulation aneurysms may have distinctive clinical features in accordance with their location. Five cases of trochlear nerve palsy due to peripheral SCA aneurysms have been reported (2, 4–7). The trochlear nerve, located beneath the tentorium, is vulnerable to injuries related to aneurysms involving the nearby posterior cerebral artery (P2 and P3 segments) or to SCA (8). One case has been reported in which the initial sign of presentation was isolated fourth nerve palsy without SAH (5).

To the best of our knowledge, there have been no reports of patients with SCA aneurysms presenting with a primary ischemic event without hemorrhage. In both our cases, cerebellar ischemia was evident on CT and MR imaging studies. Thrombosis with or without distal emboli originating from the aneurysm was considered to be the mechanism of cerebellar ischemia. The clinical manifestations were mild, and both patients recovered completely.

Pathogenesis

Aneurysms arising from peripheral segments of cerebral arteries may be congenital, but they are often reported as traumatic, mycotic, or associated with an arteriovenous malformation (2, 9). Traumatic false aneurysms usually involve the distal cerebral circulation, and fewer than 10% are located in the posterior circulation (3). Six cases of traumatic aneurysms involving the SCA have been reported (3, 10–13), including one case of distal aneurysm of the SCA in a 5-day-old infant who presented with SAH after a traumatic birth that necessitated forceps delivery (12). The SCA may be particularly vulnerable to injury caused by stretching of the edge of the tentorium (7). In case 2, a history of precipitous birth with forceps delivery was the only traumatic event reported by the patient. The presence of cystic lesions on the right side of the midbrain with no clinical manifestation led us to speculate that an injury of the right SCA may have occurred at the time of birth with the ensuing development of a false aneurysm that finally presented with thromboembolic complications. The cystic lesions would then represent encephalomalacia, most probably related to ischemic injury on the territory of the perforators of the SCA. While 85% to 90% of intracranial traumatic aneurysms become symptomatic within the first 3 weeks (3, 14), delayed onset of clinical presentation years after the head trauma has been reported (15). Delayed rupture of traumatic aneurysms of the aorta and arteries of the superior or inferior limbs has been described in the literature (16).

In the absence of any history of trauma, as in our case 1, the distal site of the aneurysm, the young age of the patient, the postpartum period, and the angiographic fusiform aspect of the aneurysm may support the diagnosis of spontaneous arterial dissection. Increased laxity of vascular walls during pregnancy, combined with fluctuations of blood pressure and intracranial pressure during labor, may predispose to arterial wall dissection. Other hemodynamic, hematologic, and endocrinologic changes occurring during pregnancy are reported to predispose to aneurysm formation and rupture (17).

Diagnosis

In both our patients, although CT findings were highly suggestive of aneurysm, the diagnosis was not readily made from selective vertebral angiograms. In case 1, sluggish flow was visible in the right SCA. Only a supraselective injection of the SCA allowed opacification of the lesion. In case 2, the right SCA was totally occluded at its origin on catheter angiography. The MR appearance, which showed degradation of blood products over time and involution of the lesion were the keys to diagnosis. An angiogram was repeated 10 days after the first one because of the known propensity of thrombosed false aneurysms to recanalize and the possibility of a false-negative MR angiogram caused by slow flow. This radiologic presentation underscores the importance of correlating the findings from different imaging techniques and of having a high index of suspicion.

Treatment

Therapeutic strategies for peripheral aneurysms depend on the relationship of the aneurysm to the parent artery. As mentioned above, most distal aneurysms are traumatic or mycotic in origin or fusiform in shape, and parent artery occlusion is generally required. Traditionally, surgical trapping was the primary method of treatment (18). Parent artery occlusion by endovascular embolization is also effective. This approach is less traumatic, and the quality of the collateral circulation can be readily assessed at the time of treatment. Collateral circulation between the SCA and both the posterior inferior cerebellar and anterior inferior cerebellar arteries allowing circulation in the distal branches of the SCA is generally efficient (18) in preventing significant infarction after deliberate occlusion, provided that the perforating and circumferential branches to the brain stem are preserved.

In case 1, only supraselective injection revealed the presence of an aneurysm on the hemispheric branch of the SCA. Because of this angiographic finding, endovascular parent vessel occlusion was performed by transarterial embolization of the aneurysm along with its parent vessel using a controllable microcoil. Since anterograde flow was already compromised with evident collateral supply, formal test occlusion was not thought to be necessary.

In case 2, thrombosis of the lesion and the absence of flow in the parent artery were established by MR imaging and angiography and no further treatment was necessary. A second angiogram was done 10 days later to ensure that there was no spontaneous recanalization of the parent artery. Follow-up MR imaging showed a decrease in the size of the lesion, confirming its nature and its resolving evolution.

Conclusion

Our two cases of peripheral SCA aneurysms had clinical and radiologic features suggestive of false aneurysms. These aneurysms presented with cerebellar ischemic events without SAH. Precise diagnosis of the underlying disorder in this setting requires careful angiographic study with supraselective catheterization if necessary and close correlation with other imaging techniques. Endovascular treatment of peripheral SCA aneurysms is a safe and successful therapeutic approach.

Footnotes

  • ↵1 Address reprint requests to Daniel Roy, MD, CHUM Hôpital Notre-Dame, 1560 Sherbrooke St East, Montreal, Quebec, Canada H2L 4M1.

References

  1. ↵
    Yoshimoto T, Kayama T, Kodama N, et al. Distribution of intracranial aneurysms. In: Suzuki, J, ed. Cerebral Aneurysms. Neuron (Tokyo) 1979;14-19
  2. ↵
    Gacs G, Vinuela F, Fox AJ, Drake CG. Peripheral aneurysms of the cerebellar arteries. J Neurosurg 1983;58:63-68
    PubMed
  3. ↵
    Quattrocchi KB, Nielsen SL, Poirier V, Wagner FC. Traumatic aneurysm of the superior cerebellar artery: case report and review of the literature. Neurosurgery 1990;27:476-479
    PubMed
  4. ↵
    Papo I, Caruselli G, Salvolini U. Aneurysm of the superior cerebellar artery. Surg Neurol 1977;7:15-17
    PubMed
  5. ↵
    Collins TE, Mehalic TF, White TK, Pezzuti RT. Trochlear nerve palsy as the sole initial sign of an aneurysm of the superior cerebellar artery. Neurosurgery 1992;30:258-261
    PubMed
  6. Agostinis C, Caverini L, Moschini L, Rotolli MR, Foresti C. Paralysis of the fourth cranial nerve due to superior cerebellar artery aneurysm. Neurology 1992;42:457-458
    FREE Full Text
  7. ↵
    Bozboga M, Canbolat A, Savas A, Turker K. Aneurysm arising from the medial branch of the superior cerebellar artery. Acta Neurochir 1996;138:1913-1914
  8. ↵
    Pipegras DG. Posterior cerebral and superior cerebellar artery aneurysms. In: Apuzzo MJL, ed. Brain Surgery. New York: Churchill Livingstone 1993;1083-1111
  9. Mabuchi S, Kamiyama H, Abe H. Distal aneurysms of the superior cerebellar artery and posterior cerebellar artery feeding an associated arteriovenous malformation: case report. Neurosurgery 1992;30:284-287
    PubMed
  10. Cockrill HH, Jimenez JP, Goree JA. Traumatic false aneurysm of the superior cerebellar artery simulating posterior fossa tumor. J Neurosurg 1977;46:377-380
    PubMed
  11. Proust F, Callonec F, Bellow F, Laquerriere A, Hannequin D, Freger P. Tentorial edge traumatic aneurysm of the superior cerebellar artery. J Neurosurg 1997;87:950-954
    PubMed
  12. ↵
    Oiatt JH, Clunie DA. Intracranial arterial aneurysm due to birth trauma. J Neurosurg 1992;77:799-803
    PubMed
  13. Ferry DJ, Kempe LG. False aneurysm secondary to penetration of the brain through orbitofacial wounds. J Neurosurg 1972;36:503-506
    PubMed
  14. O'Brain D, O'Dell MW, Eversol A. Delayed traumatic cerebral aneurysm after brain injury. Arch Phys Med Rehabil 1997;78:883-885
    PubMed
  15. ↵
    Asari S, Nakamura S, Yamada O, Beck H, Sugatani H, Higashi T. Traumatic aneurysm of peripheral cerebral arteries. J Neurosurg 1977;46:795-803
    PubMed
  16. ↵
    Jackson MR, Bergman ML, Rich NM. Delayed presentation of 50 years after a World War II vascular injury with intraoperative localization by duplex ultrasound of a traumatic false aneurysm. J Trauma 1997;43:159-161
    PubMed
  17. ↵
    Stoodley MA, Macdonald LR, Weir BK. Pregnancy and intracranial aneurysms. Neurosurg Clin North Am 1998;9:549-555
    PubMed
  18. ↵
    Chaloupka JC, Putman M, Awad IA. Endovascular treatment approach to peripheral aneurysms of the superior cerebellar artery. AJNR Am J Neuroradiol 1995;17:1338-1342
    Abstract
  • Received October 26, 2000.
  • Copyright © American Society of Neuroradiology
View Abstract
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology
Vol. 22, Issue 4
1 Apr 2001
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Distal Superior Cerebellar Artery Aneurysm Presenting with Cerebellar Infarction: Report of Two Cases
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Maria Danet, Jean Raymond, Daniel Roy
Distal Superior Cerebellar Artery Aneurysm Presenting with Cerebellar Infarction: Report of Two Cases
American Journal of Neuroradiology Apr 2001, 22 (4) 717-720;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Distal Superior Cerebellar Artery Aneurysm Presenting with Cerebellar Infarction: Report of Two Cases
Maria Danet, Jean Raymond, Daniel Roy
American Journal of Neuroradiology Apr 2001, 22 (4) 717-720;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Case Reports
    • Discussion
    • Conclusion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Endovascular Treatment of Peripheral Cerebellar Artery Aneurysms
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • SAVE vs. Solumbra Techniques for Thrombectomy
  • Contrast-Induced Encephalopathy after NeuroIR
  • CT Perfusion&Reperfusion in Acute Ischemic Stroke
Show more Interventional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire