Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Article Commentary

CT Texture Analysis: Defining and Integrating New Biomarkers for Advanced Oncologic Imaging in Precision Medicine: A Comment on “CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy”

M. Becker
American Journal of Neuroradiology December 2017, 38 (12) 2341-2343; DOI: https://doi.org/10.3174/ajnr.A5451
M. Becker
aDivision of Radiology Department of Imaging and Medical Informatics Geneva University Hospital Geneva, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Becker
  • Article
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

The remarkable article by Kuno et al1 in this issue of the American Journal of Neuroradiology raises several questions: Can texture analysis provide reliable biomarkers to predict treatment success in head and neck squamous cell carcinoma (HNSCC)? If so, will the role of the expert clinical radiologist who visually recognizes and interprets image patterns in combination with the clinical impression soon be obsolete and replaced by an increasingly ubiquitous and cheap computing infrastructure for mathematic image analysis, or will radiologists play an even more important role in the future by integrating these new biomarkers for treatment response with their expert knowledge?

In their well-designed study, Kuno et al1 evaluated the performance of pretreatment contrast-enhanced CT texture analysis for the prediction of treatment failure in primary HNSCC treated with chemoradiotherapy. An experienced neuroradiologist, who was blinded to patient history/outcome, contoured the primary tumors manually. An in-house-developed Matlab-based (MathWorks, Natick, Massachusetts) texture analysis program was then used to measure 42 features from each segmented tumor volume. The authors found that 3 histogram features (geometric mean, harmonic mean, and fourth moment) and 4 gray-level run-length features (short-run emphasis, gray-level nonuniformity, run-length nonuniformity, and short-run low gray-level emphasis) were significant predictors of outcome after adjusting for clinical variables, including smoking history, human papillomavirus (HPV) status, T-stage, and tumor volume.1

The concept of predicting treatment response based on pretreatment imaging features of HNSCC emerged about 2 decades ago and may be seen as one of the first steps in the development of personalized medicine. During past years, this concept has undergone continuous evolution. The first publications focused on the impact of gross tumor volume on radiation therapy response. In supraglottic HNSCC, preradiotherapy CT-based tumor volume obtained by manual contouring allowed stratification of patients into groups with likely and less likely local control.2 Although volume-based prediction of tumor response may be considered an important landmark, radiosensitivity may be influenced by not only volume but also heterogeneity of tumor tissue. Further studies found that glottic HNSCC was better controlled with radiation therapy when cartilage showed a normal or high T2 signal than an intermediate T2 signal.3 These observations were later explained by studies correlating preoperative MR imaging with histology, which revealed that a high T2 signal intensity corresponded to inflammation, whereas intermediate T2 signal corresponded to neoplastic cartilage invasion.4

Additional imaging biomarkers emerged, such as apparent diffusion coefficient, dynamic contrast-enhanced MR imaging/CT-derived perfusion parameters, as well as standardized uptake value (SUV) and metabolic tumor volume based on PET. In parallel, researchers evaluated the histologic underpinning of these markers, demonstrating a direct correlation between increased ADC values and high stromal content in HNSCC.5 Because high stromal content, low cellularity, and micronecrosis are associated with radioresistance, we now have a possible explanation for the observed poor outcome of patients with high pretreatment ADCs.

As a next step, combined multiparametric approaches then emerged as the new tools for predicting treatment response. In oropharyngeal/hypopharyngeal HNSCC, the combination of large tumor volume and high ADC predicted a higher likelihood of postradiotherapy local recurrence.6 Likewise, the combination of ADC and perfusion maps could separate HNSCC responders from nonresponders to chemoradiation,7 and more recently, in patients with high maximum SUV, high minimum ADC could identify the patients with the worst prognosis.8 The complementary information provided by multiparametric imaging is now increasingly allowing us to reveal the complexity of intra- and intertumor heterogeneity in vivo, and slowly the pieces of a great puzzle are beginning to come together.

Although hailed as a revolution, texture analysis to assess tumor heterogeneity is only the next logical step for predicting treatment response. Image texture can be defined as the spatial variation in pixel intensity levels or patterns, some of which are not perceived by the human eye. The great advantage of this postprocessing tool is that it can be retrospectively applied to data acquired during routine imaging. Assessment of image texture can be done with statistical methods, model-based methods, or transform-based models.9 Most publications on texture analysis in oncology are based on statistical methods, which include first-order textural features (histograms of pixel-intensity levels based on average pixel value), second-order textural features (gray-level co-occurrence matrices based on the relationship between 2 pixels), and higher-order features based on the relationship between >2 pixels. Higher order textural parameters include neighborhood gray tone difference matrices and run-length matrices. While first-order statistical methods do not convey spatial information, second-order and higher-order statistical methods do. Nevertheless, histogram analysis is more intuitive and thus more easily understood by radiologists, whereas second-order and higher-order textural features are more abstract concepts.

Due to its versatility, texture analysis of CT/MR imaging has been recently investigated in several oncologic fields, including assessment of the HPV status in HNSCC10,11 or survival of patients with advanced HNSCC treated with induction chemotherapy.12 The article by Kuno et al1 fits in this timely area of research and demonstrates some remarkable findings. CT, which is readily available in many institutions, can be used to extract meaningful texture information, allowing prediction of treatment outcome irrespective of scanner type and section thickness or the use of iterative reconstruction.

From a general scientific point of view, several methodologic challenges must still be overcome before texture analysis will be ready for routine clinical use in head and neck (HN) oncology. First, the technical platforms for texture analysis are not yet standardized, and even minor differences in equipment, acquisition protocols, or the presence of artifacts may significantly affect texture features, thus questioning whether the obtained results can be reproduced by another technical platform. Ideally, scientific studies correlating texture-based biomarkers with treatment outcome should, therefore, be conducted on the same scanner, with the same protocol, and in a well-defined homogeneous subgroup of patients. This problem is generally inherent in quantitative image analysis and is currently being addressed by international research alliances such as the Quantitative Imaging Biomarker Alliance and the European Imaging Biomarker Alliance. Second, segmentation of HN tumors, a key ingredient for any meaningful texture analysis, remains a time-consuming procedure, which must be done manually and based on visual assessment by an experienced radiologist. In view of the complex morphology of HN tumors, reliable digital automatic segmentation tools based on artificial intelligence may be difficult to develop for this particular purpose. Third, we must agree on a standard method for manual segmentation to make data comparable and reproducible. Should we contour only the most representative tumor section or rather include the entire tumor volume in the analysis? Should we include or exclude necrotic portions or ulcerated tumor parts from our analysis? Such questions need to be answered to avoid noise due to inconsistent data analysis and allow a meaningful correlation of texture features with treatment outcome. Fourth, the scarcity of histopathologic, functional, or metabolic correlates often implies that statistical power cannot be obtained unless data can be shared among institutions.

Finally, the question remains about how far we must go to understand the underlying biologic mechanisms influencing texture analysis, such as cellularity, hypoxia, or angiogenesis. Some may argue that it is sufficient to provide biomarkers with proved correlation between treatment and outcome, whereas others may insist that true scientific progress will not be possible without a real understanding of the biologic correlates of surrogate imaging biomarkers.

Texture analysis is now entering the area of personalized medicine, accompanied by sensationalistic comments in the lay press and a media hype announcing a new revolution in oncologic research. There is, indeed, little doubt that the possibility of developing biomarker-based texture analysis is promising for the progress of oncologic imaging, though many scientific questions still need to be answered. The work of Kuno et al1 is a significant contribution and takes us a step ahead. From a clinical point of view, there is still some way to go before texture analysis can be effectively implemented for the benefit of our patients. Those of us who are actively taking part in multidisciplinary HN tumor boards are fully aware that the not-so-well-quantifiable clinical-radiologic impression will continue to play an important role in multidisciplinary therapeutic decision-making.

The upcoming challenge will consist of integrating the information of biomarkers derived from multiparametric texture analysis with the more pragmatic image interpretation of the experienced clinical radiologist. The goal of clinical imaging remains to reliably provide a positive impact on the treatment and outcome of our patients. I personally believe that this may be done best by integrating the new exciting biomarkers gradually as soon as they have been proved to be scientifically reproducible, following Theodore Roosevelt's advice, “Keep your eyes on the stars and keep your feet on the ground.”

References

  1. 1.↵
    1. Kuno H,
    2. Qureshi MM,
    3. Chapman MN, et al
    . CT texture analysis potentially predicts local failure in head and neck squamous cell carcinoma treated with chemoradiotherapy. AJNR Am J Neuroradiol 2017 Oct 12. [Epub ahead of print] doi:10.3174/ajnr.A5407
    Abstract/FREE Full Text
  2. 2.↵
    1. Mancuso AA,
    2. Mukherji SK,
    3. Schmalfuss I, et al
    . Preradiotherapy computed tomography as a predictor of local control in supraglottic carcinoma. J Clin Oncol 1999;17:631–37 doi:10.1200/JCO.1999.17.2.631 pmid:10080608
    Abstract/FREE Full Text
  3. 3.↵
    1. Ljumanovic R,
    2. Langendijk JA,
    3. van Wattingen M, et al
    . MR imaging predictors of local control of glottic squamous cell carcinoma treated with radiation alone. Radiology 2007;244:205–12 doi:10.1148/radiol.2441060593 pmid:17581903
    CrossRefPubMed
  4. 4.↵
    1. Becker M,
    2. Zbären P,
    3. Casselman JW, et al
    . Neoplastic invasion of laryngeal cartilage: reassessment of criteria for diagnosis at MR imaging. Radiology 2008;249:551–59 doi:10.1148/radiol.2492072183 pmid:18936314
    CrossRefPubMed
  5. 5.↵
    1. Driessen JP,
    2. Caldas-Magalhaes J,
    3. Janssen LM, et al
    . Diffusion-weighted MR imaging in laryngeal and hypopharyngeal carcinoma: association between apparent diffusion coefficient and histologic findings. Radiology 2014;272:456–63 doi:10.1148/radiol.14131173 pmid:24749712
    CrossRefPubMed
  6. 6.↵
    1. Ohnishi K,
    2. Shioyama Y,
    3. Hatakenaka M, et al
    . Prediction of local failures with a combination of pretreatment tumor volume and apparent diffusion coefficient in patients treated with definitive radiotherapy for hypopharyngeal or oropharyngeal squamous cell carcinoma. J Radiat Res 2011;52:522–30 doi:10.1269/jrr.10178 pmid:21905311
    CrossRefPubMed
  7. 7.↵
    1. Chawla S,
    2. Kim S,
    3. Dougherty L, et al
    . Pretreatment diffusion-weighted and dynamic contrast-enhanced MRI for prediction of local treatment response in squamous cell carcinomas of the head and neck. AJR Am J Roentgenol 2013;200:35–43 doi:10.2214/AJR.12.9432 pmid:23255739
    CrossRefPubMed
  8. 8.↵
    1. Preda L,
    2. Conte G,
    3. Bonello L, et al
    . Combining standardized uptake value of FDG-PET and apparent diffusion coefficient of DW-MRI improves risk stratification in head and neck squamous cell carcinoma. Eur Radiol 2016;26:4432–41 doi:10.1007/s00330-016-4284-8 pmid:26965504
    CrossRefPubMed
  9. 9.↵
    1. Alobaidli S,
    2. McQuaid S,
    3. South C, et al
    . The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning. Br J Radiol 2014;87:20140369 doi:10.1259/bjr.20140369 pmid:25051978
    CrossRefPubMed
  10. 10.↵
    1. Buch K,
    2. Fujita A,
    3. Li B, et al
    . Using texture analysis to determine human papillomavirus status of oropharyngeal squamous cell carcinomas on CT. AJNR Am J Neuroradiol 2015;36:1343–48 doi:10.3174/ajnr.A4285 pmid:25836725
    Abstract/FREE Full Text
  11. 11.↵
    1. de Perrot T,
    2. Lenoir V,
    3. Domingo Ayllón M, et al
    . Apparent diffusion coefficient histograms of human papillomavirus-positive and human papillomavirus-negative head and neck squamous cell carcinoma: assessment of tumor heterogeneity and comparison with histopathology. AJNR Am J Neuroradiol 2017 Sep 14. [Epub ahead of print] doi:10.3174/ajnr.A5370 pmid:28912282
    Abstract/FREE Full Text
  12. 12.↵
    1. Zhang H,
    2. Graham CM,
    3. Elci O, et al
    . Locally advanced squamous cell carcinoma of the head and neck: CT texture and histogram analysis allow independent prediction of overall survival in patients treated with induction chemotherapy. Radiology 2013;269:801–09 doi:10.1148/radiol.13130110 pmid:23912620
    CrossRefPubMed
  • © 2017 by American Journal of Neuroradiology
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (12)
American Journal of Neuroradiology
Vol. 38, Issue 12
1 Dec 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
CT Texture Analysis: Defining and Integrating New Biomarkers for Advanced Oncologic Imaging in Precision Medicine: A Comment on “CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherap…
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Becker
CT Texture Analysis: Defining and Integrating New Biomarkers for Advanced Oncologic Imaging in Precision Medicine: A Comment on “CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy”
American Journal of Neuroradiology Dec 2017, 38 (12) 2341-2343; DOI: 10.3174/ajnr.A5451

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
CT Texture Analysis: Defining and Integrating New Biomarkers for Advanced Oncologic Imaging in Precision Medicine: A Comment on “CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy”
M. Becker
American Journal of Neuroradiology Dec 2017, 38 (12) 2341-2343; DOI: 10.3174/ajnr.A5451
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • References
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (2)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Baseline Computed Tomography Radiomic and Genomic Assessment of Head and Neck Squamous Cell Carcinoma
    Colin Y. Wang, Joseph J. Foy, Tanguy Y. Siewert, Daniel J. Haraf, Daniel T. Ginat
    Journal of Computer Assisted Tomography 2020 44 4
  • Development and validation of a CT based radiomics nomogram for preoperative prediction of ISUP/WHO grading in renal clear cell carcinoma
    Xiaohui Liu, Xiaowei Han, Xu Wang, Kaiyuan Xu, Mingliang Wang, Guozheng Zhang
    Abdominal Radiology 2024 50 3

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire