Research ArticleBRAIN
Quantitative Proton MR Spectroscopic Findings of Cortical Reorganization in the Auditory Cortex of Musicians
Kubilay Aydin, Koray Ciftci, Ege Terzibasioglu, Mehmed Ozkan, Asli Demirtas, Serra Sencer and Ozenc Minareci
American Journal of Neuroradiology January 2005, 26 (1) 128-136;
Kubilay Aydin
Koray Ciftci
Ege Terzibasioglu
Mehmed Ozkan
Asli Demirtas
Serra Sencer

References
- ↵Chen R, Cohen LG, Hallet M. Nervous system reorganization following injury. Neuroscience 2002;6:761–773
- ↵Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E. Increased cortical representation of the fingers of the left hand in string players. Science 1995;270:305–307
- ↵Maguire E, Gadian DG, Johnsrude IS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 2000;97:4398–4403
- ↵Gaser C, Schlaug G. Brain structures differ between musicians and non-musicians. J Neurosci 2003;23:9240–9245
- ↵Platel H, Price C, Baron JC, et al. The structural components of music perception: a functional anatomical study. Brain 1997;120:229–243
- ↵Chauvel CL, Peretz I, Babai M, Laguitton V, Chauvel P. Contribution of different cortical areas in the temporal lobes to music processing. Brain 1998;121:1853–1867
- ↵Ohnishi T, Matsuda H, Asada T, et al. Functional anatomy of musical perception in musicians. Cereb Cortex 2001;11:754–760
- Janata P, Birk JL, Van Horn JD, et al. The cortical topography of tonal structures underlying Western music. Science 2002;298:2167–2170
- ↵Koelsch S, Gunter TC, Cramon DYV, et al. Bach speaks: a cortical “language -network” serves the processing of music. Neuroimage 2002;17:956–966
- ↵Schlaug G, Jancke L, Huang Y, Steinmetz H. In vivo evidence of structural brain asymmetry in musicians. Science 1995;267:699–701
- ↵Zatorre RJ, Perry DW, Beckett CA, Westbury CF, Evans AC. Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proc Natl Acad Sci U S A 1998;95:3172–3177
- ↵Keenan JP, Thangaraj V, Halpern AR, Schlaug G. Absolute pitch and planum temporale. Neuroimage 2001;14:1402–1408
- ↵Hutchinson S, Lee LH, Gaab N, Schlaug G. Cerebellar volumes of musicians. Cereb Cortex 2003;13:943–949
- ↵Pantev C, Oostenveld R, Engelien A, et al. Increased cortical representation in musicians. Nature 1998;392:811–814
- ↵Shapleske J, Rossell SL, Woodruff PW, David AS. The planum temporale: quantitative review of its structural, functional and clinical significance. Brain Res Brain Res Rev 1999;29:26–49
- ↵
- ↵Michaelis T, Merboldt KD, Bruhn H, et al. Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 1993;187:219–227
- ↵Zilles K. Neuronal plasticity as an adaptive property of the central nervous system. Ann Anat 1992;174:383–391
- ↵Sluming V, Barrick T, Howard M, et al. Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. Neuroimage 2002;17:1613–1622
- ↵Schneider P, Scherg M, Dosch HG, et al. Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci 2002;5:688–694
- ↵Bevers TG, Chiarello RJ. Cerebral dominance in musicians and nonmusicians. Science 1974;9:537–539
- ↵Evers S, Dannert J, Rodding D, Rotter G, Ringelstein EB. The cerebral haemodynamics of music perception: a transcranial Doppler sonography study. Brain 1999;122:75–85
- ↵Sergeant D. Experimental investigation of absolute pitch. J Res Music Educ 1969;17:135–143
- ↵Terrazas A, McNaughton B. Brain growth and the cognitive map. Proc Natl Acad Sci U S A 2000;25:4414–4416
- ↵Neale JH, Bzdega T, Wroblewska B. N-acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 2000;75:443–452
- ↵Miller BL. A review of chemical issues in H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 1991;4:47–52
- ↵Simmons M, Frondoza C, Coyle J. Immunocytochemical localization of N-acetyl aspartate with monoclonal antibodies. Neuroscience 1991;45:37–45
- ↵Baslow MH. Functions of N-acetyl-L-aspartate and N-acetyl-L-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling. J Neurochem 2000;75:453–459
- ↵Chenga LL, Newell K, Mallory AE, Hyman BT, Gonzalez RG. Quantification of neurons in Alzheimer and control brains with ex vivo high resolution magic angle spinning proton magnetic resonance spectroscopy and stereology. Magn Reson Imaging 2002;20:527–533
- ↵Kempermann G, Kuhn HG, Gage FH. Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci 1998;18:3206–3212
- ↵Kempermann G, Gast G, Gage FH. Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 2002;52:135–143
- ↵Nillson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol 1999;39:569–578
- ↵Kuhn HG, Palmer TD, Fuchs E. Adult neurogenesis: a compensatory mechanism for neuronal damage. Eur Arch Psychiatry Clin Neurosci 2001;251:152–158
- ↵Gage FH. Neurogenesis in the adult brain. J Neurosci 2002;22:612–613
- ↵Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH. Fibroblast growth factor-2 activates a latent neurogenic programin neural stem cell from diverse regions of the adult CNS. J Neurosci 1999;19:8487–8497
- ↵Kempermann G. Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci 2002b;22:635–638
- ↵Cecchi GA, Petreannu LT, Alvarez-Buylla A, Magnasco MO. Unsupervised learning and adaptation in a model of adult neurogenesis. J Comput Neurosci 2001;11:175–182
- ↵Acebes A, Ferrus A. Increasing the number of synapses modifies olfactory perception in Drosophila. J Neurosci 2001;15:6264–6273
- ↵Devaud JM, Acebes A, Ferrus A. Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila. J Neurosci 2001;15:6274–6282
- ↵Black JE, Isaac KR, Anderson BJ, Alcantara AA, Greenough WT. Learning causes synaptogenesis whereas motor activity causes angiogenesis in cerebellar cortex of the adult rats. Proc Natl Acad Sci U S A 1990;87:5568–5572
- Isaacs KR, Anderson BJ, Alacantara AA, Black JE, Greenough WT. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab 1992;12:110–119
- Anderson BJ, Li X, Alcantara A, et al. Glial hypertrophy is associated with synaptogenesis following motor-skill learning, but not with angiogenesis following exercise. Glia 1994;11:73–80
- ↵Kleim JA, Lussing E, Schwarz ER, Comery TA, Greenough WT. Synaptogenesis and FOS expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 1996;16:4529–4535
- ↵Jones EG. GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 1993;3:361–372
- ↵Ziemann U, Muellbacher W, Hallett M, Cohen LG. Modulation of practice-dependent plasticity in human motor cortex. Brain 2001;124:1171–1181
- ↵Levy LM, Ziemann U, Chen R, Cohen LG. Rapid modulation of GABA in sensorimotor cortex induced by acute deafferentation. Ann Neurol 2002;52:755–761
In this issue
Advertisement
Kubilay Aydin, Koray Ciftci, Ege Terzibasioglu, Mehmed Ozkan, Asli Demirtas, Serra Sencer, Ozenc Minareci
Quantitative Proton MR Spectroscopic Findings of Cortical Reorganization in the Auditory Cortex of Musicians
American Journal of Neuroradiology Jan 2005, 26 (1) 128-136;
0 Responses
Jump to section
Related Articles
- No related articles found.
Cited By...
This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.
More in this TOC Section
Similar Articles
Advertisement