Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Research ArticlePHYSICS REVIEW
Open Access

Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 2

S. Mittal, Z. Wu, J. Neelavalli and E.M. Haacke
American Journal of Neuroradiology February 2009, 30 (2) 232-252; DOI: https://doi.org/10.3174/ajnr.A1461
S. Mittal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z. Wu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Neelavalli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.M. Haacke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. ↵
    Haacke EM, Mittal S, Wu Z, et al. Susceptibility-weighted imaging: technical aspects and clinical applications, Part I. AJNR Am J Neuroradiol.2009;30:19–30
    Abstract/FREE Full Text
  2. ↵
    Tong KA, Ashwal S, Obenaus A, et al. Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 2008;29:9–17
    Abstract/FREE Full Text
  3. ↵
    Brown AW, Elovic EP, Kothari S, et al. Congenital and acquired brain injury. Part 1. Epidemiology, pathophysiology, prognostication, innovative treatments, and prevention. Arch Phys Med Rehabil 2008;89:S3–8
    CrossRefPubMed
  4. ↵
    Tong KA, Ashwal S, Holshouser BA, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology 2003;227:332–39
    CrossRefPubMedWeb of Science
  5. ↵
    Tong KA, Ashwal S, Holshouser BA, et al. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol 2004;56:36–50
    CrossRefPubMedWeb of Science
  6. ↵
    Babikian T, Freier MC, Tong KA, et al. Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. Pediatr Neurol 2005;33:184–94
    CrossRefPubMed
  7. ↵
    Mannion RJ, Cross J, Bradley P, et al. Mechanism-based MRI classification of traumatic brainstem injury and its relationship to outcome. J Neurotrauma 2007;24:128–35
    CrossRefPubMedWeb of Science
  8. ↵
    Ashwal S, Babikian T, Gardner-Nichols J, et al. Susceptibility-weighted imaging and proton magnetic resonance spectroscopy in assessment of outcome after pediatric traumatic brain injury. Arch Phys Med Rehabil 2006;87:S50–58
    PubMedWeb of Science
  9. ↵
    Schellinger PD, Jansen O, Fiebach JB, et al. A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke 1999;30:765–68
    Abstract/FREE Full Text
  10. ↵
    Hermier M, Nighoghossian N. Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke 2004;35:1989–94
    Abstract/FREE Full Text
  11. ↵
    Sehgal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 2005;22:439–50
    CrossRefPubMed
  12. ↵
    Thomas B, Somasundaram S, Thamburaj K, et al. Clinical applications of susceptibility weighted MR imaging of the brain: a pictorial review. Neuroradiology 2008;50:105–16
    CrossRefPubMedWeb of Science
  13. ↵
    Wycliffe ND, Choe J, Holshouser B, et al. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging 2004;20:372–77
    CrossRefPubMedWeb of Science
  14. ↵
    Schellinger PD, Thomalla G, Fiehler J, et al. MRI-based and CT-based thrombolytic therapy in acute stroke within and beyond established time windows: an analysis of 1210 patients. Stroke 2007;38:2640–45
    Abstract/FREE Full Text
  15. ↵
    Flacke S, Urbach H, Block W, et al. Perfusion and molecular diffusion-weighted MR imaging of the brain: in vivo assessment of tissue alteration in cerebral ischemia. Amino Acids 2002;23:309–16
    CrossRefPubMed
  16. ↵
    Chalela JA, Haymore JB, Ezzeddine MA, et al. The hypointense MCA sign. Neurology 2002;58:1470
    FREE Full Text
  17. ↵
    Hermier M, Nighoghossian N, Derex L, et al. MRI of acute post-ischemic cerebral hemorrhage in stroke patients: diagnosis with T2*-weighted gradient-echo sequences. Neuroradiology 2001;43:809–15
    CrossRefPubMed
  18. ↵
    Kidwell CS, Saver JL, Villablanca JP, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke 2002;33:95–98
    Abstract/FREE Full Text
  19. ↵
    Nighoghossian N, Hermier M, Adeleine P, et al. Old microbleeds are a potential risk factor for cerebral bleeding after ischemic stroke: a gradient-echo T2*-weighted brain MRI study. Stroke 2002;33:735–42
    Abstract/FREE Full Text
  20. Coutts S, Frayne R, Sevick R, et al. Microbleeding on MRI as a marker for hemorrhage after stroke thrombolysis. Stroke 2002;33:1457–58
    FREE Full Text
  21. ↵
    Chalela JA, Kang DW, Warach S. Multiple cerebral microbleeds: MRI marker of a diffuse hemorrhage-prone state. J Neuroimaging 2004;14:54–57
    PubMedWeb of Science
  22. ↵
    Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of loci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–42
    Abstract/FREE Full Text
  23. ↵
    Von Kummer R. MRI: the new gold standard for detecting brain hemorrhages. Stroke 2002;33:1748–49
    FREE Full Text
  24. ↵
    Akter M, Hirai T, Hiai Y, et al. Detection of hemorrhagic hypointense foci in the brain on susceptibility-weighted imaging clinical and phantom studies. Acad Radiol 2007;14:1011–19
    CrossRefPubMed
  25. ↵
    Greer DM, KoroshetzWJ, Cullen S, et al. Magnetic resonance imaging improves detection of intracerebral hemorrhage over computed tomography after intra-arterial thrombolysis. Stroke 2004;35:491–95
    Abstract/FREE Full Text
  26. ↵
    Knopman DS. Cerebrovascular disease and dementia. Br J Radiol 2007;80:S121–27
    Abstract/FREE Full Text
  27. ↵
    Haacke EM, DelProposto ZS, Chaturvedi S, et al. Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. AJNR Am J Neuroradiol 2007;28:316–17
    Abstract/FREE Full Text
  28. ↵
    Greenberg SM, Eng JA, Ning M, et al. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke 2004;35:1415–20
    Abstract/FREE Full Text
  29. ↵
    Vernooij MW, van der Lugt A, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008;70:1208–14
    Abstract/FREE Full Text
  30. ↵
    Larsen JP, Britt W, Kido D, et al. Susceptibility weighted magnetic resonance imaging in evaluation of dementia. Radiology Case Reports 2007;2:102
  31. ↵
    Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996;383:707–10
    CrossRefPubMedWeb of Science
  32. ↵
    Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1–25
    CrossRefPubMedWeb of Science
  33. ↵
    Harder SL, Hopp KM, Ward H, et al. Mineralization of the deep gray matter with age: a retrospective review with susceptibility-weighted MR imaging. AJNR Am J Neuroradiol 2008;29:176–83
    Abstract/FREE Full Text
  34. ↵
    Jellinger KA. The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson's disease. Drugs Aging 1999;14:115–40
    CrossRefPubMedWeb of Science
  35. Qian ZM, Wang Q. Expression of iron transport proteins and excessive iron accumulation of iron in the brain in neurodegenerative disorders. Brain Res Rev 1998;27:257–67
    CrossRefPubMed
  36. Swaiman KF. Hallervorden–Spatz and brain iron metabolism. Arch Neurol 1991;48:1285–93
    CrossRefPubMedWeb of Science
  37. ↵
    Bakshi R, Shaikh ZA, Janardhan V. MRI T2 shortening (black T2) in multiple sclerosis: frequency, location, and clinical correlation. Neuroreport 2000;11:15–21
    CrossRefPubMedWeb of Science
  38. ↵
    Ogg RJ, Langston JW, Haacke EM, et al. The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging 1999;17:1141–48
    CrossRefPubMedWeb of Science
  39. ↵
    Haacke EM, Ayaz M, Khan A, et al. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 2007;26:256–64
    CrossRefPubMedWeb of Science
  40. ↵
    Qian ZM, Shen X. Brain iron transport and neurodegeneration. Trends Mol Med 2001;7:103–08
    CrossRefPubMedWeb of Science
  41. ↵
    Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology 2008;70:1411–17
    Abstract/FREE Full Text
  42. ↵
    Schenck JF, Zimmerman EA, Li Z. High-field magnetic resonance imaging of brain iron in Alzheimer disease. Top Magn Reson Imaging 2006;17:41–50
    CrossRefPubMed
  43. ↵
    McNeill A, Birchall D, Hayflick SJ. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 2008;70:1614–19
    Abstract/FREE Full Text
  44. ↵
    Schenck JF. Magnetic resonance imaging of brain iron. J Neurol Sci 2003;207:99–102
    CrossRefPubMedWeb of Science
  45. ↵
    Calabrese M, Filippi M, Rovaris M, et al. Morphology and evolution of cortical lesions in multiple sclerosis: a longitudinal MRI study. Neuroimage 2008;42:1324–28
    CrossRefPubMedWeb of Science
  46. ↵
    Tan IL, van Schijndel RA, Pouwels PJ, et al. MR venography of multiple sclerosis. AJNR Am J Neuroradiol 2000;21:1039–42
    Abstract/FREE Full Text
  47. ↵
    Adams CW, Abdulla YH, Torres EM, et al. Periventricular lesions in multiple sclerosis: their perivenous origin and relationship to granular ependymitis. Neuropathol Appl Neurobiol 1987;13:141–52
    CrossRefPubMed
  48. ↵
    Fog T. The topography of plaques in multiple sclerosis with special reference to cerebral plaques. Acta Neurol Scand Suppl 1965;15:1–161
    PubMed
  49. ↵
    Ludwin SK. Understanding multiple sclerosis: lessons from pathology. Ann Neurol 2000;47:691–93
    CrossRefPubMedWeb of Science
  50. ↵
    Hammond KE, Lupo JM, Xu D, et al. Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases. Neuroimage 2008;39:1682–92
    CrossRefPubMedWeb of Science
  51. ↵
    Haacke EM, Makki M, Ge Y, et al. Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J Magn Reson Imaging.2009;29 In press
  52. ↵
    Brouillard P, Vikkula M. Genetic causes of vascular malformations. Hum Mol Genet 2007;16:140–49
    CrossRef
  53. ↵
    Reichenbach JR, Jonetz-Mentzel L, Fitzek C, et al. High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique. Neuroradiology 2001;43:364–69
    CrossRefPubMedWeb of Science
  54. ↵
    Lee BC, Vo KD, Kido DK, et al. MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions. AJNR Am J Neuroradiol 1999;20:1239–42
    Abstract/FREE Full Text
  55. ↵
    Battistini S, Rocchi R, Cerase A, et al. Clinical, magnetic resonance imaging, and genetic study of 5 Italian families with cerebral cavernous malformation. Arch Neurol 2007;64:843–48
    CrossRefPubMed
  56. ↵
    Lehnhardt FG, von Smekal U, Ruckriem B, et al. Value of gradient-echo magnetic resonance imaging in the diagnosis of familial cerebral cavernous malformation. Arch Neurol 2005;62:653–58
    CrossRefPubMedWeb of Science
  57. ↵
    Haacke EM, Xu Y, Cheng YC, et al. Susceptibility-weighted imaging (SWI). Magn Reson Med 2004;52:612–18
    CrossRefPubMedWeb of Science
  58. ↵
    Rauscher A, Sedlacik J, Barth M, et al. Magnetic susceptibility-weighted MR phase imaging of the human brain. AJNR Am J Neuroradiol 2005;26:736–42
    Abstract/FREE Full Text
  59. ↵
    de Souza JM, Domingues RC, Cruz LC, et al. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations; a comparison with T2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol 2008;29:154–58
    Abstract/FREE Full Text
  60. ↵
    Abla A, Wait SD, Uschold T, et al. Developmental venous anomaly, cavernous malformation, and capillary telangiectasia: spectrum of a single disease. Acta Neurochir (Wien)2008;150:487–89. Epub 2008 Mar 26
    CrossRefPubMed
  61. ↵
    Topper R, Jurgens E, Reul J, et al. Clinical significance of intracranial developmental venous anomalies. J Neurol Neurosurg Psychiatry 1999;67:234–38
    Abstract/FREE Full Text
  62. ↵
    Comi AM. Update on Sturge-Weber syndrome: diagnosis, treatment, quantitative measures, and controversies. Lymphat Res Biol 2007;5:257–64
    CrossRefPubMed
  63. ↵
    Lee JS, Asano E, Muzik O, et al. Sturge-Weber syndrome: correlation between clinical course and FDG PET findings. Neurology 2001;57:189–95
    Abstract/FREE Full Text
  64. Fischbein NJ, Barkovich AJ, Wu Y, et al. Sturge-Weber syndrome with no leptomeningeal enhancement on MRI. Neuroradiology 1998;40:177–80
    CrossRefPubMedWeb of Science
  65. ↵
    Reid DE, Maria BL, Drane WE, et al. Central nervous system perfusion and metabolism abnormalities in Sturge-Weber syndrome. J Child Neurol 1997;12:218–22
    FREE Full Text
  66. ↵
    Juhasz C, Haacke EM, Hu J, et al. Multimodality imaging of cortical and white matter abnormalities in Sturge-Weber syndrome. AJNR Am J Neuroradiol 2007;28:900–06
    Abstract/FREE Full Text
  67. ↵
    Hu J, Yu Y, Juhasz C, et al. MR susceptibility weighted imaging (SWI) complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge-Weber syndrome. J Magn Reson Imaging 2008;28:300–07
    CrossRefPubMed
  68. ↵
    Mentzel HJ, Dieckmann A, Fitzek C, et al. Early diagnosis of cerebral involvement in Sturge-Weber syndrome using high-resolution BOLD MR venography. Pediatr Radiol 2005;35:85–90
    CrossRefPubMedWeb of Science
  69. ↵
    Shen Y, Kou Z, Kreipke CW, et al. In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging. Magn Reson Imaging 2007;25:219–27
    CrossRefPubMed
  70. ↵
    Ameri A, Bousser MG. Cerebral venous thrombosis. Neurol Clin 1992;10:87–111
    PubMedWeb of Science
  71. ↵
    Tang PH, Chai J, Chan YH, et al. Superior sagittal sinus thrombosis: subtle signs on neuroimaging. Ann Acad Med Singapore 2008;37:397–401
    PubMed
  72. ↵
    Preter M, Tzourio C, Ameri A, et al. Long-term prognosis in cerebral venous thrombosis: follow-up of 77 patients. Stroke 1996;27:243–46
    Abstract/FREE Full Text
  73. ↵
    Hinman JM, Provenzale JM. Hypointense thrombus on T2-weighted MR imaging: a potential pitfall in the diagnosis of dural sinus thrombosis. Eur J Radiol 2002;41:147–52
    CrossRefPubMed
  74. ↵
    Serpa JA, Yancey LS, White AC. Advances in the diagnosis and management of neurocysticercocis. Expert Rev Anti Infect Ther 2006;4:1051–61
    CrossRefPubMed
  75. ↵
    Wu Z, Mittal S, Kish K, et al. Identification of calcification with magnetic resonance imaging using susceptibility-weighted imaging: a case study. J Magn Reson Imaging 2009;29:177–82
    CrossRefPubMed
  76. ↵
    Bagley LJ, Grossman RI, Judy KD, et al. Gliomas: correlation of magnetic susceptibility artifact with histologic grade. Radiology 1997;202:511–16
    PubMed
  77. ↵
    Sehgal V, Delproposto Z, Haddar D, et al. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 2006;24:41–51
    CrossRefPubMed
  78. Noebauer-Huhmann IM, Pinker K, Barth M, et al. Contrast-enhanced, high-resolution, susceptibility-weighted magnetic resonance imaging of the brain: dose-dependent optimization at 3 tesla and 1.5 tesla in healthy volunteers. Invest Radiol 2006;41:249–55
    CrossRefPubMed
  79. ↵
    Rauscher A, Sedlacik J, Fitzek C, et al. High resolution susceptibility weighted MR-imaging of brain tumors during the application of a gaseous agent. Rofo 2005;177:1065–69
    PubMed
  80. ↵
    Christoforidis GA, Kangarlu A, Abduljalil AM, et al. Susceptibility-based imaging of glioblastoma microvascularity at 8 T: correlation of MR imaging and postmortem pathology. AJNR Am J Neuroradiol 2004;25:756–60
    Abstract/FREE Full Text
  81. ↵
    Sharma S, Sharma MC, Gupta DK, et al. Angiogenic patterns and their quantitation in high grade astrocytic tumors. J Neurooncol 2006;79:19–30
    CrossRefPubMed
  82. ↵
    Miller CR, Perry A. Glioblastoma. Arch Pathol Lab Med 2007;131:397–406
    PubMedWeb of Science
  83. ↵
    Haddar D, Haacke E, Sehgal V, et al. Susceptibility weighted imaging: theory and applications[in French]. J Radiol 2004;85:1901–08
    PubMed
  84. ↵
    Oot RF, New PF, Pile-Spellman J, et al. The detection of intracranial calcifications by MR. AJNR Am J Neuroradiol 1986;7:801–09
    Abstract/FREE Full Text
  85. Avrahami E, Cohn DF, Feibel M, et al. MRI demonstration and CT correlation of the brain in patients with idiopathic intracerebral calcification. J Neurol 1994;241:381–84
    CrossRefPubMedWeb of Science
  86. ↵
    Tsuchiya K, Makita K, Furui S, et al. MRI appearances of calcified regions within intracranial tumors. Neuroradiology 1993;35:341–44
    CrossRefPubMed
  87. ↵
    Runge VM, Schoerner W, Niendorf HP, et al. Initial clinical evaluation of gadolinium DTPA for contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 1985;3:27–35
    CrossRefPubMed
  88. ↵
    Brant-Zawadzki M, Berry I, Osaki L, et al. Gd-DTPA in clinical MR of the brain: 1. Intraaxial lesions. AJR Am J Roentgenol 1986;147:1223–30
    PubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 30 (2)
American Journal of Neuroradiology
Vol. 30, Issue 2
February 2009
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 2
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
S. Mittal, Z. Wu, J. Neelavalli, E.M. Haacke
Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 2
American Journal of Neuroradiology Feb 2009, 30 (2) 232-252; DOI: 10.3174/ajnr.A1461

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Susceptibility-Weighted Imaging: Technical Aspects and Clinical Applications, Part 2
S. Mittal, Z. Wu, J. Neelavalli, E.M. Haacke
American Journal of Neuroradiology Feb 2009, 30 (2) 232-252; DOI: 10.3174/ajnr.A1461
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • TBI: Diffuse Axonal Injury
    • Stroke
    • Neurodegenerative Disorders
    • MS
    • Vascular Malformations and Venous Disease
    • Neurocysticercosis
    • Brain Tumors
    • Future Directions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • The relationship of white matter tract orientation to vascular geometry in the human brain
  • Know your stroke mimics
  • Brain Alterations in COVID Recovered Revealed by Susceptibility-Weighted Magnetic Resonance Imaging
  • CT-like images in MRI improve specificity of erosion detection in patients with hand arthritis: a diagnostic accuracy study with CT as standard of reference
  • Adapting the UK Biobank brain imaging protocol and analysis pipeline for the C-MORE multi-organ study of COVID-19 survivors
  • Susceptibility vessel sign as a predictor for recanalization and clinical outcome in acute ischaemic stroke: A Systematic Review and Meta-analysis
  • Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge
  • Black Dipole or White Dipole: Using Susceptibility Phase Imaging to Differentiate Cerebral Microbleeds from Intracranial Calcifications
  • The index vein pointing to the origin of the migraine aura symptom: A case series
  • Direct thromboaspiration efficacy for mechanical thrombectomy is related to the angle of interaction between the aspiration catheter and the clot
  • Frequency, Extent, and Correlates of Superficial Siderosis and Ependymal Siderosis in Premature Infants with Germinal Matrix Hemorrhage: An SWI Study
  • Validation of Highly Accelerated Wave-CAIPI SWI Compared with Conventional SWI and T2*-Weighted Gradient Recalled-Echo for Routine Clinical Brain MRI at 3T
  • Increased Diameters of the Internal Cerebral Veins and the Basal Veins of Rosenthal Are Associated with White Matter Hyperintensity Volume
  • SWI filtered-phase imaging in calcific cerebral embolism secondary to cardiac myxoma
  • Gadolinium-Enhanced Susceptibility-Weighted Imaging in Multiple Sclerosis: Optimizing the Recognition of Active Plaques for Different MR Imaging Sequences
  • Engorgement of Deep Medullary Veins in Neurosarcoidosis: A Common-Yet-Underrecognized Cerebrovascular Finding on SWI
  • The Bone Does Not Predict the Brain in Sturge-Weber Syndrome
  • Quantitative Susceptibility Mapping after Sports-Related Concussion
  • Spatiotemporal evolution of venous narrowing in acute MS lesions
  • In Vivo Imaging of Venous Side Cerebral Small-Vessel Disease in Older Adults: An MRI Method at 7T
  • Arterial Spin Labeling Perfusion Magnetic Resonance Imaging Performed in Acute Perinatal Stroke Reveals Hyperperfusion Associated With Ischemic Injury
  • Prominence of Medullary Veins on Susceptibility-Weighted Images Provides Prognostic Information in Patients with Subacute Stroke
  • Susceptibility-weighted imaging in parenchymal neurosyphilis: identification of a new MRI finding
  • Susceptibility-weighted imaging in Todd paralysis
  • SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study
  • Susceptibility-Weighted Imaging in Pediatric Arterial Ischemic Stroke: A Valuable Alternative for the Noninvasive Evaluation of Altered Cerebral Hemodynamics
  • Double Inversion Recovery MR Sequence for the Detection of Subacute Subarachnoid Hemorrhage
  • Persistent Cerebrovascular Damage After Stroke in Type Two Diabetic Rats Measured by Magnetic Resonance Imaging
  • MR Quantitative Susceptibility Imaging for the Evaluation of Iron Loading in the Brains of Patients with {beta}-Thalassemia Major
  • Improved T2* Imaging without Increase in Scan Time: SWI Processing of 2D Gradient Echo
  • Susceptibility-Weighted Imaging is More Reliable Than T2*-Weighted Gradient-Recalled Echo MRI for Detecting Microbleeds
  • Current differential diagnoses and treatment options of vascular occlusions presenting as bilateral thalamic infarcts: a review of the literature
  • The venous angioarchitecture of sporadic cerebral cavernous malformations: a susceptibility weighted imaging study at 7 T MRI
  • Progressive Brain Iron Accumulation in Neuroferritinopathy Measured by the Thalamic T2* Relaxation Rate
  • Differentiation of Pyogenic Brain Abscesses from Necrotic Glioblastomas with Use of Susceptibility-Weighted Imaging
  • Developmental venous anomaly coexisting with a true arteriovenous malformation: a rare clinical entity
  • Susceptibility-Weighted Imaging in Patients with Pyogenic Brain Abscesses at 1.5T: Characteristics of the Abscess Capsule
  • Detection of Intratumoral Calcification in Oligodendrogliomas by Susceptibility-Weighted MR Imaging
  • Simultaneous Arteriovenous Shunting and Venous Congestion Identification in Dural Arteriovenous Fistulas Using Susceptibility-Weighted Imaging: Initial Experience
  • Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum
  • The Agfa Mayneord lecture: MRI of short and ultrashort T2 and T2* components of tissues, fluids and materials using clinical systems
  • Evaluation of Parenchymal Neuro-Behcet Disease by Using Susceptibility-Weighted Imaging
  • Early Evaluation of Tumoral Response to Antiangiogenic Therapy by Arterial Spin Labeling Perfusion Magnetic Resonance Imaging and Susceptibility Weighted Imaging in a Patient With Recurrent Glioblastoma Receiving Bevacizumab
  • Suspicious Neuroimaging Pattern of Thrombotic Microangiopathy
  • Susceptibility-Weighted MR Phase Imaging Can Demonstrate Retrograde Leptomeningeal Venous Drainage in Patients with Dural Arteriovenous Fistula
  • Susceptibility-Weighted Imaging in Migraine with Aura
  • Cerebral Microhemorrhages Detected by Susceptibility-Weighted Imaging in Amateur Boxers
  • Distinguishing Recurrent Primary Brain Tumor from Radiation Injury: A Preliminary Study Using a Susceptibility-Weighted MR Imaging-Guided Apparent Diffusion Coefficient Analysis Strategy
  • Familial versus Sporadic Cavernous Malformations: Differences in Developmental Venous Anomaly Association and Lesion Phenotype
  • Localization of the Subthalamic Nucleus: Optimization with Susceptibility-Weighted Phase MR Imaging
  • Added Value and Diagnostic Performance of Intratumoral Susceptibility Signals in the Differential Diagnosis of Solitary Enhancing Brain Lesions: Preliminary Study
  • Hemorrhage in Posterior Reversible Encephalopathy Syndrome: Imaging and Clinical Features
  • Semiquantitative Assessment of Intratumoral Susceptibility Signals Using Non-Contrast-Enhanced High-Field High-Resolution Susceptibility-Weighted Imaging in Patients with Gliomas: Comparison with MR Perfusion Imaging
  • Crossref (589)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition
    Wei Li, Bing Wu, Chunlei Liu
    NeuroImage 2011 55 4
  • Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge
    Betty Raman, Mark Philip Cassar, Elizabeth M. Tunnicliffe, Nicola Filippini, Ludovica Griffanti, Fidel Alfaro-Almagro, Thomas Okell, Fintan Sheerin, Cheng Xie, Masliza Mahmod, Ferenc E. Mózes, Adam J. Lewandowski, Eric O. Ohuma, David Holdsworth, Hanan Lamlum, Myles J. Woodman, Catherine Krasopoulos, Rebecca Mills, Flora A. Kennedy McConnell, Chaoyue Wang, Christoph Arthofer, Frederik J. Lange, Jesper Andersson, Mark Jenkinson, Charalambos Antoniades, Keith M. Channon, Mayooran Shanmuganathan, Vanessa M. Ferreira, Stefan K. Piechnik, Paul Klenerman, Christopher Brightling, Nick P. Talbot, Nayia Petousi, Najib M. Rahman, Ling-Pei Ho, Kate Saunders, John R. Geddes, Paul J. Harrison, Kyle Pattinson, Matthew J. Rowland, Brian J. Angus, Fergus Gleeson, Michael Pavlides, Ivan Koychev, Karla L. Miller, Clare Mackay, Peter Jezzard, Stephen M. Smith, Stefan Neubauer
    EClinicalMedicine 2021 31
  • Current Clinical Brain Tumor Imaging
    Javier E. Villanueva-Meyer, Marc C. Mabray, Soonmee Cha
    Neurosurgery 2017 81 3
  • Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions
    Andreas Charidimou, Jennifer Linn, Meike W. Vernooij, Christian Opherk, Saloua Akoudad, Jean-Claude Baron, Steven M. Greenberg, Hans Rolf Jäger, David J. Werring
    Brain 2015 138 8
  • A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults
    Anahit Babayan, Miray Erbey, Deniz Kumral, Janis D. Reinelt, Andrea M. F. Reiter, Josefin Röbbig, H. Lina Schaare, Marie Uhlig, Alfred Anwander, Pierre-Louis Bazin, Annette Horstmann, Leonie Lampe, Vadim V. Nikulin, Hadas Okon-Singer, Sven Preusser, André Pampel, Christiane S. Rohr, Julia Sacher, Angelika Thöne-Otto, Sabrina Trapp, Till Nierhaus, Denise Altmann, Katrin Arelin, Maria Blöchl, Edith Bongartz, Patric Breig, Elena Cesnaite, Sufang Chen, Roberto Cozatl, Saskia Czerwonatis, Gabriele Dambrauskaite, Maria Dreyer, Jessica Enders, Melina Engelhardt, Marie Michele Fischer, Norman Forschack, Johannes Golchert, Laura Golz, C. Alexandrina Guran, Susanna Hedrich, Nicole Hentschel, Daria I. Hoffmann, Julia M. Huntenburg, Rebecca Jost, Anna Kosatschek, Stella Kunzendorf, Hannah Lammers, Mark E. Lauckner, Keyvan Mahjoory, Ahmad S. Kanaan, Natacha Mendes, Ramona Menger, Enzo Morino, Karina Näthe, Jennifer Neubauer, Handan Noyan, Sabine Oligschläger, Patricia Panczyszyn-Trzewik, Dorothee Poehlchen, Nadine Putzke, Sabrina Roski, Marie-Catherine Schaller, Anja Schieferbein, Benito Schlaak, Robert Schmidt, Krzysztof J. Gorgolewski, Hanna Maria Schmidt, Anne Schrimpf, Sylvia Stasch, Maria Voss, Annett Wiedemann, Daniel S. Margulies, Michael Gaebler, Arno Villringer
    Scientific Data 2019 6 1
  • Hemorrhage in Posterior Reversible Encephalopathy Syndrome: Imaging and Clinical Features
    H.M. Hefzy, W.S. Bartynski, J.F. Boardman, D. Lacomis
    American Journal of Neuroradiology 2009 30 7
  • Overview of quantitative susceptibility mapping
    Andreas Deistung, Ferdinand Schweser, Jürgen R. Reichenbach
    NMR in Biomedicine 2017 30 4
  • In Vivo Quantitative Susceptibility Mapping (QSM) in Alzheimer's Disease
    Julio Acosta-Cabronero, Guy B. Williams, Arturo Cardenas-Blanco, Robert J. Arnold, Victoria Lupson, Peter J. Nestor, James R. Connor
    PLoS ONE 2013 8 11
  • Cerebral Microbleeds: Imaging and Clinical Significance
    Sven Haller, Meike W. Vernooij, Joost P. A. Kuijer, Elna-Marie Larsson, Hans Rolf Jäger, Frederik Barkhof
    Radiology 2018 287 1
  • Susceptibility-Weighted Imaging is More Reliable Than T2*-Weighted Gradient-Recalled Echo MRI for Detecting Microbleeds
    Ah-Ling Cheng, Saima Batool, Cheryl R. McCreary, M.L. Lauzon, Richard Frayne, Mayank Goyal, Eric E. Smith
    Stroke 2013 44 10

More in this TOC Section

  • Theoretic Basis and Technical Implementations of CT Perfusion in Acute Ischemic Stroke, Part 2: Technical Implementations
  • Theoretic Basis and Technical Implementations of CT Perfusion in Acute Ischemic Stroke, Part 1: Theoretic Basis
Show more PHYSICS REVIEW

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire