Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Review ArticleReview Articles
Open Access

GABA-Based Evaluation of Neurologic Conditions: MR Spectroscopy

L.M. Levy and A.J. Degnan
American Journal of Neuroradiology February 2013, 34 (2) 259-265; DOI: https://doi.org/10.3174/ajnr.A2902
L.M. Levy
aFrom the Department of Radiology, George Washington University Medical Center, Washington, DC.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.J. Degnan
aFrom the Department of Radiology, George Washington University Medical Center, Washington, DC.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Roberts E,
    2. Baxter CF
    . Metabolic studies of gamma-aminobutyric acid. Neurology 1958;8(suppl 1):77–78
    FREE Full Text
  2. 2.↵
    1. Roberts E,
    2. Rothstein M,
    3. Baxter CF
    . Some metabolic studies of gamma-aminobutyric acid. Proc Soc Exp Biol Med 1958;97:796–802
    Abstract/FREE Full Text
  3. 3.↵
    1. Defelipe J
    . Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell-surface molecules. Cerebral Cortex 1993;3:273–89
    Abstract/FREE Full Text
  4. 4.↵
    1. Chang L,
    2. Cloak CC,
    3. Ernst T
    . Magnetic resonance spectroscopy studies of GABA in neuropsychiatric disorders. J Clin Psychiatry 2003;64(suppl 3):7–14
  5. 5.↵
    1. Doelken MT,
    2. Hammen T,
    3. Bogner W,
    4. et al
    . Alterations of intracerebral gamma-aminobutyric acid (GABA) levels by titration with levetiracetam in patients with focal epilepsies. Epilepsia 2010;51:1477–82
    CrossRefPubMed
  6. 6.↵
    1. Rothman DL,
    2. Petroff OA,
    3. Behar KL,
    4. et al
    . Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci U S A 1993;90:5662–66
    Abstract/FREE Full Text
  7. 7.↵
    1. Bonavita S,
    2. Di Salle F,
    3. Tedeschi G
    . Proton MRS in neurological disorders. Eur J Radiol 1999;30:125–31
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Goto N,
    2. Yoshimura R,
    3. Moriya J,
    4. et al
    . Critical examination of a correlation between brain gamma-aminobutyric acid (GABA) concentrations and a personality trait of extroversion in healthy volunteers as measured by a 3 Tesla proton magnetic resonance spectroscopy study. Psychiatry Res 2010;182:53–57
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Jensen JE,
    2. Frederick BD,
    3. Wang L,
    4. et al
    . Two-dimensional, J-resolved spectroscopic imaging of GABA at 4 Tesla in the human brain. Magn Reson Med 2005;54:783–88
    CrossRefPubMed
  10. 10.↵
    1. Jensen JE,
    2. Frederick Bde B,
    3. Renshaw PF
    . Grey and white matter GABA level differences in the human brain using two-dimensional, J-resolved spectroscopic imaging. NMR Biomed 2005;18:570–76
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Keltner JR,
    2. Wald LL,
    3. Frederick BD,
    4. et al
    . In vivo detection of GABA in human brain using a localized double-quantum filter technique. Magn Reson Med 1997;37:366–71
    CrossRefPubMed
  12. 12.↵
    1. Choi C,
    2. Bhardwaj PP,
    3. Kalra S,
    4. et al
    . Measurement of GABA and contaminants in gray and white matter in human brain in vivo. Magn Reson Med 2007;58:27–33
    CrossRefPubMed
  13. 13.↵
    1. Choi IY,
    2. Lee SP,
    3. Shen J
    . In vivo single-shot three-dimensionally localized multiple quantum spectroscopy of GABA in the human brain with improved spectral selectivity. J Magn Reson 2005;172:9–16
    CrossRefPubMed
  14. 14.↵
    1. Choi IY,
    2. Lee SP,
    3. Merkle H,
    4. et al
    . Single-shot two-echo technique for simultaneous measurement of GABA and creatine in the human brain in vivo. Magn Reson Med 2004;51:1115–21
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Snyder J,
    2. Hanstock CC,
    3. Wilman AH
    . Spectral editing of weakly coupled spins using variable flip angles in PRESS constant echo time difference spectroscopy: application to GABA. J Magn Reson 2009;200:245–50
    CrossRefPubMed
  16. 16.↵
    1. Shen J
    . Slice-selective J-coupled coherence transfer using symmetric linear phase pulses: applications to localized GABA spectroscopy. J Magn Reson 2003;163:73–80
    CrossRefPubMed
  17. 17.↵
    1. Waddell KW,
    2. Avison MJ,
    3. Joers JM,
    4. et al
    . A practical guide to robust detection of GABA in human brain by J-difference spectroscopy at 3 T using a standard volume coil. Magn Reson Imaging 2007;25:1032–38. Epub 2007 Feb 2
    CrossRefPubMed
  18. 18.↵
    1. Henry ME,
    2. Lauriat TL,
    3. Shanahan M,
    4. et al
    . Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: a phantom study at 4 Tesla. J Magn Reson 2011;208:210–18
    CrossRefPubMed
  19. 19.↵
    1. Ke Y,
    2. Cohen BM,
    3. Bang JY,
    4. et al
    . Assessment of GABA concentration in human brain using two-dimensional proton magnetic resonance spectroscopy. Psychiatry Res 2000;100:169–78
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Ryner LN,
    2. Sorenson JA,
    3. Thomas MA
    . 3D localized 2D NMR-spectroscopy on an MRI scanner. J Magn Reson Series B 1995;107:126–37
    CrossRefPubMed
  21. 21.↵
    1. Ryner LN,
    2. Sorenson JA,
    3. Thomas MA
    . Localized 2D J-resolved 1H MR spectroscopy: strong coupling effects in vitro and in vivo. Magn Reson Imaging 1995;13:853–69
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Edden RA,
    2. Barker PB
    . Spatial effects in the detection of gamma-aminobutyric acid: improved sensitivity at high fields using inner volume saturation. Magn Reson Med 2007;58:1276–82
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Edden RA,
    2. Barker PB
    . If J doesn't evolve, it won't J-resolve: J-PRESS with bandwidth-limited refocusing pulses. Magn Reson Med 2011;65:1509–14
    CrossRefPubMed
  24. 24.↵
    1. Donahue MJ,
    2. Near J,
    3. Blicher JU,
    4. et al
    . Baseline GABA concentration and fMRI response. Neuroimage 2010; 53:392–98
    CrossRefPubMed
  25. 25.↵
    1. Northoff G,
    2. Walter M,
    3. Schulte RF,
    4. et al
    . GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 2007;10:1515–17
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Muthukumaraswamy SD,
    2. Edden RA,
    3. Jones DK,
    4. et al
    . Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci U S A 2009;106:8356–61
    Abstract/FREE Full Text
  27. 27.↵
    1. Levy LM,
    2. Ziemann U,
    3. Chen R,
    4. et al
    . Rapid modulation of GABA in sensorimotor cortex induced by acute deafferentation. Ann Neurol 2002;52:755–61
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Yamamoto M,
    2. Takahashi S,
    3. Otsuki S,
    4. et al
    . GABA levels in cerebrospinal fluid of patients with epilepsy. Folia Psychiatr Neurol Jpn 1985;39:515–19
    PubMed
  29. 29.↵
    1. McKnight K,
    2. Jiang Y,
    3. Hart Y,
    4. et al
    . Serum antibodies in epilepsy and seizure-associated disorders. Neurology 2005;65:1730–36
    Abstract/FREE Full Text
  30. 30.↵
    1. Peltola J,
    2. Kulmala P,
    3. Isojarvi J,
    4. et al
    . Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology 2000;55:46–50
    Abstract/FREE Full Text
  31. 31.↵
    1. Stagg CJ,
    2. Lang B,
    3. Best JG,
    4. et al
    . Autoantibodies to glutamic acid decarboxylase in patients with epilepsy are associated with low cortical GABA levels. Epilepsia 2010;51:1898–901
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Petroff OA,
    2. Rothman DL,
    3. Behar KL,
    4. et al
    . Low brain GABA level is associated with poor seizure control. Ann Neurol 1996;40:908–11
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Petroff OA,
    2. Hyder F,
    3. Rothman DL,
    4. et al
    . Homocarnosine and seizure control in juvenile myoclonic epilepsy and complex partial seizures. Neurology 2001;56:709–15
    Abstract/FREE Full Text
  34. 34.↵
    1. Petroff OA,
    2. Behar KL,
    3. Rothman DL
    . New NMR measurements in epilepsy: measuring brain GABA in patients with complex partial seizures. Adv Neurol 1999;79:939–45
    PubMed
  35. 35.↵
    1. Simister RJ,
    2. McLean MA,
    3. Barker GJ,
    4. et al
    . Proton MR spectroscopy of metabolite concentrations in temporal lobe epilepsy and effect of temporal lobe resection. Epilepsy Res 2009;83:168–76
    CrossRefPubMed
  36. 36.↵
    1. Simister RJ,
    2. McLean MA,
    3. Barker GJ,
    4. et al
    . Proton MRS reveals frontal lobe metabolite abnormalities in idiopathic generalized epilepsy. Neurology 2003;61:897–902
    Abstract/FREE Full Text
  37. 37.↵
    1. Simister RJ,
    2. McLean MA,
    3. Barker GJ,
    4. et al
    . Proton magnetic resonance spectroscopy of malformations of cortical development causing epilepsy. Epilepsy Res 2007;74:107–15
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Taki MM,
    2. Harada M,
    3. Mori K,
    4. et al
    . High gamma-aminobutyric acid level in cortical tubers in epileptic infants with tuberous sclerosis complex measured with the MEGA-editing J-difference method and a three-Tesla clinical MRI instrument. Neuroimage 2009;47:1207–14
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Aasly J,
    2. Silfvenius H,
    3. Aas TC,
    4. et al
    . Proton magnetic resonance spectroscopy of brain biopsies from patients with intractable epilepsy. Epilepsy Res 1999;35:211–17
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Petroff OA,
    2. Pleban LA,
    3. Spencer DD
    . Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of the epileptic human brain. Magn Reson Imaging 1995;13:1197–211
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Petroff OA,
    2. Rothman DL,
    3. Behar KL,
    4. et al
    . Initial observations on effect of vigabatrin on in vivo 1H spectroscopic measurements of gamma-aminobutyric acid, glutamate, and glutamine in human brain. Epilepsia 1995; 36:457–64
    CrossRefPubMed
  42. 42.↵
    1. Levy LM,
    2. Levy-Reis I,
    3. Fujii M,
    4. et al
    . Brain gamma-aminobutyric acid changes in stiff-person syndrome. Arch Neurol 2005;62:970–74
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Dalakas MC,
    2. Fujii M,
    3. Li M,
    4. et al
    . The clinical spectrum of anti-GAD antibody-positive patients with stiff-person syndrome. Neurology 2000; 55:1531–35
    Abstract/FREE Full Text
  44. 44.↵
    1. Dalakas MC,
    2. Li M,
    3. Fujii M,
    4. et al
    . Stiff person syndrome: quantification, specificity, and intrathecal synthesis of GAD65 antibodies. Neurology 2001;57:780–84
    Abstract/FREE Full Text
  45. 45.↵
    1. Murinson BB,
    2. Butler M,
    3. Marfurt K,
    4. et al
    . Markedly elevated GAD antibodies in SPS: effects of age and illness duration. Neurology 2004;63:2146–48
    Abstract/FREE Full Text
  46. 46.↵
    1. Levy LM,
    2. Hallett M
    . Impaired brain GABA in focal dystonia. Ann Neurol 2002;51:93–101
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Quartarone A,
    2. Siebner HR,
    3. Rothwell JC
    . Task-specific hand dystonia: can too much plasticity be bad for you? Trends Neurosci 2006;29:192–99
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Taylor M,
    2. Bhagwagar Z,
    3. Cowen PJ,
    4. et al
    . GABA and mood disorders. Psychol Med 2003;33:387–93
    CrossRefPubMed
  49. 49.↵
    1. Hasler G,
    2. van der Veen JW,
    3. Tumonis T,
    4. et al
    . Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007;64:193–200
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Sanacora G,
    2. Mason GF,
    3. Rothman DL,
    4. et al
    . Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 1999;56:1043–47
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Bhagwagar Z,
    2. Wylezinska M,
    3. Jezzard P,
    4. et al
    . Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int J Neuropsychopharmacol 2008;11:255–60
    Abstract/FREE Full Text
  52. 52.↵
    1. Cotter D,
    2. Landau S,
    3. Beasley C,
    4. et al
    . The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry 2002;51:377–86
    CrossRefPubMedWeb of Science
  53. 53.↵
    1. Berrettini WH,
    2. Nurnberger JI Jr.,
    3. Hare TA,
    4. et al
    . Reduced plasma and CSF gamma-aminobutyric acid in affective illness: effect of lithium carbonate. Biol Psychiatry 1983;18:185–94
    PubMed
  54. 54.↵
    1. Goddard AW,
    2. Mason GF,
    3. Almai A,
    4. et al
    . Reductions in occipital cortex GABA levels in panic disorder detected with 1H-magnetic resonance spectroscopy. Arch Gen Psychiatry 2001;58:556–61
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Goddard AW,
    2. Mason GF,
    3. Appel M,
    4. et al
    . Impaired GABA neuronal response to acute benzodiazepine administration in panic disorder. Am J Psychiatry 2004;161:2186–93
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Pollack MH,
    2. Jensen JE,
    3. Simon NM,
    4. et al
    . High-field MRS study of GABA, glutamate and glutamine in social anxiety disorder: response to treatment with levetiracetam. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:739–43
    CrossRefPubMed
  57. 57.↵
    1. Hasler G,
    2. van der Veen JW,
    3. Grillon C,
    4. et al
    . Effect of acute psychological stress on prefrontal GABA concentration determined by proton magnetic resonance spectroscopy. Am J Psychiatry 2010;167:1226–31
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. Hashimoto T,
    2. Bazmi HH,
    3. Mirnics K,
    4. et al
    . Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry 2008;165:479–89
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Yoon JH,
    2. Maddock RJ,
    3. Rokem A,
    4. et al
    . GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. J Neurosci 2010;30:3777–81
    Abstract/FREE Full Text
  60. 60.↵
    1. Tayoshi S,
    2. Nakataki M,
    3. Sumitani S,
    4. et al
    . GABA concentration in schizophrenia patients and the effects of antipsychotic medication: a proton magnetic resonance spectroscopy study. Schizophr Res 2010;117:83–91
    CrossRefPubMed
  61. 61.↵
    1. Krystal JH,
    2. Staley J,
    3. Mason G,
    4. et al
    . Gamma-aminobutyric acid type A receptors and alcoholism: intoxication, dependence, vulnerability, and treatment. Arch Gen Psychiatry 2006;63:957–68
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Addolorato G,
    2. Caputo F,
    3. Capristo E,
    4. et al
    . Baclofen efficacy in reducing alcohol craving and intake: a preliminary double-blind randomized controlled study. Alcohol Alcohol 2002; 37:504–08
    Abstract/FREE Full Text
  63. 63.↵
    1. Ticku MK
    . Alcohol and GABA-benzodiazepine receptor function. Ann Med 1990;22:241–46
    PubMed
  64. 64.↵
    1. Behar KL,
    2. Rothman DL,
    3. Petersen KF,
    4. et al
    . Preliminary evidence of low cortical GABA levels in localized 1H-MR spectra of alcohol-dependent and hepatic encephalopathy patients. Am J Psychiatry 1999;156:952–54
    PubMedWeb of Science
  65. 65.↵
    1. Mason GF,
    2. Petrakis IL,
    3. de Graaf RA,
    4. et al
    . Cortical gamma-aminobutyric acid levels and the recovery from ethanol dependence: preliminary evidence of modification by cigarette smoking. Biol Psychiatry 2006;59:85–93
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Mason G,
    2. Appel M,
    3. de Graaf R,
    4. et al
    . Brain GABA falls by 1 month of detoxification and remains low. Alcohol Clin Exp Res 2003;Suppl(27):56A
  67. 67.↵
    1. Ke Y,
    2. Streeter CC,
    3. Nassar LE,
    4. et al
    . Frontal lobe GABA levels in cocaine dependence: a two-dimensional, J-resolved magnetic resonance spectroscopy study. Psychiatry Res 2004;130:283–93
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Ke Y,
    2. Streeter CC,
    3. Yurgelun-Todd DA,
    4. et al
    . A J-resolved, two dimensional MRS study of brain GABA and NAA levels in cocaine dependent subjects-before and after treatment. In: Proceedings of the International Society of Magnetic Resonance in Medicine, May 7–13, 2001; Montreal, Quebec, Canada
  69. 69.↵
    1. Winkelman JW,
    2. Buxton OM,
    3. Jensen JE,
    4. et al
    . Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). Sleep 2008;31:1499–506
    PubMed
  70. 70.↵
    1. Kakeda S,
    2. Korogi Y,
    3. Moriya J,
    4. et al
    . Influence of work shift on glutamic acid and gamma-aminobutyric acid (GABA): evaluation with proton magnetic resonance spectroscopy at 3T. Psychiatry Res 2011;192:55–59
    CrossRefPubMed
  71. 71.↵
    1. Kim SJ,
    2. Lyoo IK,
    3. Lee YS,
    4. et al
    . Increased GABA levels in medial prefrontal cortex of young adults with narcolepsy. Sleep 2008;31:342–47
    PubMedWeb of Science
  72. 72.↵
    1. Bigal ME,
    2. Hetherington H,
    3. Pan J,
    4. et al
    . Occipital levels of GABA are related to severe headaches in migraine. Neurology 2008;70:2078–80
    FREE Full Text
  73. 73.↵
    1. Fatemi SH,
    2. Folsom TD,
    3. Reutiman TJ,
    4. et al
    . Expression of GABA(B) receptors is altered in brains of subjects with autism. Cerebellum 2009;8:64–69
    CrossRefPubMedWeb of Science
  74. 74.↵
    1. Fatemi SH,
    2. Reutiman TJ,
    3. Folsom TD,
    4. et al
    . GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 2009;39:223–30
    CrossRefPubMedWeb of Science
  75. 75.↵
    1. Harada M,
    2. Taki MM,
    3. Nose A,
    4. et al
    . Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3T instrument. J Autism Dev Disord 2011;41:447–54
    CrossRefPubMed
  76. 76.↵
    1. Henkin RI,
    2. Levy LM,
    3. Lin CS
    . Taste and smell phantoms revealed by brain functional MRI (fMRI). J Comput Assist Tomogr 2000;24:106–23
    CrossRefPubMed
  77. 77.↵
    1. Levy LM,
    2. Henkin RI
    . Brain gamma-aminobutyric acid levels are decreased in patients with phantageusia and phantosmia demonstrated by magnetic resonance spectroscopy. J Comput Assist Tomogr 2004;28:721–27
    CrossRefPubMed
  78. 78.↵
    1. Licata SC,
    2. Jensen JE,
    3. Penetar DM,
    4. et al
    . A therapeutic dose of zolpidem reduces thalamic GABA in healthy volunteers: a proton MRS study at 4 T. Psychopharmacology (Berl) 2009;203:819–29. Epub 2009 Jan 6
    CrossRef
  79. 79.↵
    1. Mattson RH,
    2. Petroff OA,
    3. Rothman D,
    4. et al
    . Vigabatrin: effect on brain GABA levels measured by nuclear magnetic resonance spectroscopy. Acta Neurol Scand Suppl 1995;162:27–30
    PubMed
  80. 80.↵
    1. Petroff OA,
    2. Rothman DL,
    3. Behar KL,
    4. et al
    . Human brain GABA levels rise rapidly after initiation of vigabatrin therapy. Neurology 1996;47:1567–71
    Abstract/FREE Full Text
  81. 81.↵
    1. Weber OM,
    2. Verhagen A,
    3. Duc CO,
    4. et al
    . Effects of vigabatrin intake on brain GABA activity as monitored by spectrally edited magnetic resonance spectroscopy and positron emission tomography. Magn Reson Imaging 1999;17:417–25
    CrossRefPubMedWeb of Science
  82. 82.↵
    1. Verhoeff NP,
    2. Petroff OA,
    3. Hyder F,
    4. et al
    . Effects of vigabatrin on the GABAergic system as determined by [123I]iomazenil SPECT and GABA MRS. Epilepsia 1999;40:1433–38
    CrossRefPubMedWeb of Science
  83. 83.↵
    1. Petroff OA,
    2. Rothman DL
    . Measuring human brain GABA in vivo: effects of GABA-transaminase inhibition with vigabatrin. Mol Neurobiol 1998;16:97–121
    PubMedWeb of Science
  84. 84.↵
    1. Mueller SG,
    2. Weber OM,
    3. Duc CO,
    4. et al
    . Effects of vigabatrin on brain GABA+/CR signals in patients with epilepsy monitored by 1H-NMR-spectroscopy: responder characteristics. Epilepsia 2001;42:29–40
  85. 85.↵
    1. Kuzniecky R,
    2. Hetherington H,
    3. Ho S,
    4. et al
    . Topiramate increases cerebral GABA in healthy humans. Neurology 1998;51:627–29
    Abstract/FREE Full Text
  86. 86.↵
    1. Moore CM,
    2. Wardrop M,
    3. deB Frederick B,
    4. et al
    . Topiramate raises anterior cingulate cortex glutamine levels in healthy men; a 4.0 T magnetic resonance spectroscopy study. Psychopharmacology (Berl) 2006;188:236–43
    CrossRefPubMed
  87. 87.↵
    1. Petroff OA,
    2. Hyder F,
    3. Rothman DL,
    4. et al
    . Topiramate rapidly raises brain GABA in epilepsy patients. Epilepsia 2001;42:543–48
    CrossRefPubMedWeb of Science
  88. 88.↵
    1. Petroff OA,
    2. Hyder F,
    3. Mattson RH,
    4. et al
    . Topiramate increases brain GABA, homocarnosine, and pyrrolidinone in patients with epilepsy. Neurology 1999;52:473–78
    Abstract/FREE Full Text
  89. 89.↵
    1. Shiah IS,
    2. Yatham LN,
    3. Gau YC,
    4. et al
    . Effect of lamotrigine on plasma GABA levels in healthy humans. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:419–23
    CrossRefPubMed
  90. 90.↵
    1. Kuzniecky R,
    2. Ho S,
    3. Pan J,
    4. et al
    . Modulation of cerebral GABA by topiramate, lamotrigine, and gabapentin in healthy adults. Neurology 2002;58:368–72
    Abstract/FREE Full Text
  91. 91.↵
    1. Petroff OA,
    2. Hyder F,
    3. Rothman DL,
    4. et al
    . Effects of gabapentin on brain GABA, homocarnosine, and pyrrolidinone in epilepsy patients. Epilepsia 2000;41:675–80
    CrossRefPubMedWeb of Science
  92. 92.↵
    1. Sanacora G,
    2. Mason GF,
    3. Rothman DL,
    4. et al
    . Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry 2002;159:663–65
    CrossRefPubMedWeb of Science
  93. 93.↵
    1. Bhagwagar Z,
    2. Wylezinska M,
    3. Taylor M,
    4. et al
    . Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. Am J Psychiatry 2004;161:368–70
    CrossRefPubMedWeb of Science
  94. 94.↵
    1. Streeter CC,
    2. Whitfield TH,
    3. Owen L,
    4. et al
    . Effects of yoga versus walking on mood, anxiety, and brain GABA levels: a randomized controlled MRS study. J Altern Complement Med 2010;16:1145–52
    CrossRefPubMed
  95. 95.↵
    1. Sanacora G,
    2. Gueorguieva R,
    3. Epperson CN,
    4. et al
    . Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 2004;61:705–13
    CrossRefPubMedWeb of Science
  96. 96.↵
    1. Manor D,
    2. Rothman DL,
    3. Mason GF,
    4. et al
    . The rate of turnover of cortical GABA from [1-C-13]glucose is reduced in rats treated with the GABA-transaminase inhibitor vigabatrin (gamma-vinyl GABA). Neurochem Res 1996;21:1031–41
    PubMedWeb of Science
  97. 97.↵
    1. Dager SR,
    2. Corrigan NM,
    3. Richards TL,
    4. et al
    . Research applications of magnetic resonance spectroscopy to investigate psychiatric disorders. Top Magn Reson Imaging 2008;19:81–96
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 34 (2)
American Journal of Neuroradiology
Vol. 34, Issue 2
1 Feb 2013
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
GABA-Based Evaluation of Neurologic Conditions: MR Spectroscopy
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
L.M. Levy, A.J. Degnan
GABA-Based Evaluation of Neurologic Conditions: MR Spectroscopy
American Journal of Neuroradiology Feb 2013, 34 (2) 259-265; DOI: 10.3174/ajnr.A2902

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
GABA-Based Evaluation of Neurologic Conditions: MR Spectroscopy
L.M. Levy, A.J. Degnan
American Journal of Neuroradiology Feb 2013, 34 (2) 259-265; DOI: 10.3174/ajnr.A2902
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Principles of GABA Measurement on MR Spectroscopy
    • Clinical Uses of GABA MR Spectroscopy
    • Investigation of GABA Physiology by Using MR Spectroscopy
    • Conditions Involving GABA
    • Treatment Effects on GABA Concentration
    • Anti-Epileptic Drugs
    • Future Directions
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Excitation-Inhibition Balance and Fronto-Limbic Connectivity Drive TMS Treatment Outcomes in Refractory Depression
  • InSpectro-Gadget: A tool for estimating neurotransmitter and neuromodulator receptor distributions for MRS voxels
  • Neuromolecular interactions guiding homeostatic mechanisms underlying healthy ageing: A view from computational microscope
  • Crossref (52)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Mass spectrometry imaging of amino neurotransmitters: a comparison of derivatization methods and application in mouse brain tissue
    Clara Esteve, Else A. Tolner, Reinald Shyti, Arn M. J. M. van den Maagdenberg, Liam A. McDonnell
    Metabolomics 2016 12 2
  • Anterior cingulate Glutamate–Glutamine cycle metabolites are altered in euthymic bipolar I disorder
    Márcio Gerhardt Soeiro-de-Souza, Anke Henning, Rodrigo Machado-Vieira, Ricardo A. Moreno, Bruno F. Pastorello, Cláudia da Costa Leite, Homero Vallada, Maria Concepcion Garcia Otaduy
    European Neuropsychopharmacology 2015 25 12
  • Interface Sensitized Optical Microfiber Biosensors
    Bai-Ou Guan, Yunyun Huang
    Journal of Lightwave Technology 2019 37 11
  • Detection of metabolite changes in response to a varying visual stimulation paradigm using short‐TE 1H MRS at 7 T
    Ralf Mekle, Simone Kühn, Harald Pfeiffer, Semiha Aydin, Florian Schubert, Bernd Ittermann
    NMR in Biomedicine 2017 30 2
  • The Metabolic Interplay between Cancer and Other Diseases
    Anne Le, Sunag Udupa, Cissy Zhang
    Trends in Cancer 2019 5 12
  • GABA quantitation using MEGA-PRESS: Regional and hemispheric differences
    Monika Grewal, Aroma Dabas, Sumiti Saharan, Peter B. Barker, Richard A.E. Edden, Pravat K. Mandal
    Journal of Magnetic Resonance Imaging 2016 44 6
  • Spatial variability and reproducibility of GABA‐edited MEGA‐LASER 3D‐MRSI in the brain at 3 T
    Petra Hnilicová, Michal Považan, Bernhard Strasser, Ovidiu C. Andronesi, Martin Gajdošík, Ulrike Dydak, Jozef Ukropec, Dušan Dobrota, Siegfried Trattnig, Wolfgang Bogner
    NMR in Biomedicine 2016 29 11
  • A fiber-optic sensor for neurotransmitters with ultralow concentration: near-infrared plasmonic electromagnetic field enhancement using raspberry-like meso-SiO2 nanospheres
    Yunyun Huang, Mingfei Ding, Tuan Guo, Dejiao Hu, Yaoyu Cao, Long Jin, Bai-Ou Guan
    Nanoscale 2017 9 39
  • Global and Targeted Metabolomics Reveal That Bupleurotoxin, a Toxic Type of Polyacetylene, Induces Cerebral Lesion by Inhibiting GABA Receptor in Mice
    Zhongxiao Zhang, Cheng Lu, Xinru Liu, Juan Su, Weixing Dai, Shikai Yan, Aiping Lu, Weidong Zhang
    Journal of Proteome Research 2014 13 2
  • Glutamate and GABA concentration changes in the globus pallidus internus of Parkinson’s patients during performance of implicit and declarative memory tasks: A report of two subjects
    Robert J. Buchanan, Klevest Gjini, David Darrow, Georgeta Varga, Jennifer L. Robinson, Zoltan Nadasdy
    Neuroscience Letters 2015 589

More in this TOC Section

  • Mechanisms of Healing in Coiled Intracranial Aneurysms: A Review of the Literature
  • Ultra-High-Field MR Neuroimaging
  • 4D-CTA in Neurovascular Disease: A Review
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire