Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Review ArticleReview Articles
Open Access

Imaging Brain Oxygenation with MRI Using Blood Oxygenation Approaches: Methods, Validation, and Clinical Applications

T. Christen, D.S. Bolar and G. Zaharchuk
American Journal of Neuroradiology June 2013, 34 (6) 1113-1123; DOI: https://doi.org/10.3174/ajnr.A3070
T. Christen
aFrom the Department of Radiology (T.C., G.Z.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.S. Bolar
bDepartment of Radiology (D.S.B.), Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
cDepartment of Electrical Engineering and Computer Science (D.S.B.), Massachusetts Institute of Technology, Cambridge, Massachusetts.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Zaharchuk
aFrom the Department of Radiology (T.C., G.Z.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Gray LH,
    2. Conger AD,
    3. Ebert M,
    4. et al
    . The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 1953;26:638–48
    Abstract/FREE Full Text
  2. 2.↵
    1. Brown JM,
    2. Wilson WR
    . Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004;4:437–47
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Kidwell CS,
    2. Alger JR,
    3. Saver JL
    . Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003;34:2729–35
    Abstract/FREE Full Text
  4. 4.↵
    1. Röther J,
    2. Schellinger PD,
    3. Gass A,
    4. et al
    . Effect of intravenous thrombolysis on MRI parameters and functional outcome in acute stroke <6 hours. Stroke 2002;33:2438–45
    Abstract/FREE Full Text
  5. 5.↵
    1. Ishii K,
    2. Kitagaki H,
    3. Kono M,
    4. et al
    . Decreased medial temporal oxygen metabolism in Alzheimer's disease shown by PET. J Nucl Med 1996;37:1159–65
    Abstract/FREE Full Text
  6. 6.↵
    1. Karimi M,
    2. Golchin N,
    3. Tabbal SD,
    4. et al
    . Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease. Brain 2008;131(pt 10):2710–19
    Abstract/FREE Full Text
  7. 7.↵
    1. Beal MF
    . Mitochondria, oxidative damage, and inflammation in Parkinson's disease. Ann N Y Acad Sci 2003;991:120–31
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Vikram DS,
    2. Zweier JL,
    3. Kuppusamy P
    . Methods for noninvasive imaging of tissue hypoxia. Antioxid Redox Signal 2007;9:1745–56
    CrossRefPubMed
  9. 9.↵
    1. Vaupel P,
    2. Schlenger K,
    3. Knoop C,
    4. et al
    . Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 1991;51:3316–22
    Abstract/FREE Full Text
  10. 10.↵
    1. Christen T,
    2. Lemasson B,
    3. Pannetier N,
    4. et al
    . Is T2* Enough to assess oxygenation? Quantitative blood oxygen level-dependent analysis in brain tumor. Radiology 2011;262:495–502
    PubMed
  11. 11.↵
    1. Boxerman JL,
    2. Hamberg LM,
    3. Rosen BR,
    4. et al
    . MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995;34:555–66
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Robinson SP,
    2. Rijken PF,
    3. Howe FA,
    4. et al
    . Tumor vascular architecture and function evaluated by non-invasive susceptibility MRI methods and immunohistochemistry. J Magn Reson Imaging 2003;17:445–54
    CrossRefPubMed
  13. 13.↵
    1. Baudelet C,
    2. Gallez B
    . Current issues in the utility of blood oxygen level dependent MRI for the assessment of modulations in tumor oxygenation. Current Medical Imaging Reviews 2005;1:229–43
    CrossRef
  14. 14.↵
    1. Yablonskiy DA,
    2. Haacke EM
    . Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994;32:749–63
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Yablonskiy DA
    . Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix: phantom study. Magn Reson Med 1998;39:417–28
    PubMedWeb of Science
  16. 16.↵
    1. An H,
    2. Lin W
    . Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging. J Cereb Blood Flow Metab 2000;20:1225–36
    PubMedWeb of Science
  17. 17.↵
    1. He X,
    2. Yablonskiy DA
    . Quantitative BOLD: mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: default state. Magn Reson Med 2007;57:115–26
    CrossRefPubMed
  18. 18.↵
    1. Dickson JD,
    2. Ash TW,
    3. Williams GB,
    4. et al
    . Quantitative BOLD: the effect of diffusion. J Magn Reson Imaging 2010;32:953–61
    CrossRefPubMed
  19. 19.↵
    1. Sohlin MC,
    2. Schad LR
    . Susceptibility-related MR signal dephasing under nonstatic conditions: experimental verification and consequences for qBOLD measurements. J Magn Reson Imaging 2011;33:417–25
    CrossRefPubMed
  20. 20.↵
    1. Sedlacik J,
    2. Reichenbach JR
    . Validation of quantitative estimation of tissue oxygen extraction fraction and deoxygenated blood volume fraction in phantom and in vivo experiments by using MRI. Magn Reson Med 2010;63:910–21
    CrossRefPubMed
  21. 21.↵
    1. Christen T,
    2. Lemasson B,
    3. Pannetier N,
    4. et al
    . Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation. NMR Biomed 2010 Oct 19. [Epub ahead of print]
  22. 22.↵
    1. Leenders KL,
    2. Perani D,
    3. Lammertsma AA,
    4. et al
    . Cerebral blood flow, blood volume and oxygen utilization: normal values and effect of age. Brain 2011;24:393–403
  23. 23.↵
    1. An H,
    2. Lin W
    . Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using MRI: effects of magnetic field variation. Magn Reson Med 2002;47:958–66
    CrossRefPubMed
  24. 24.↵
    1. An H,
    2. Lin W
    . Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging. Magn Reson Med 2002;48:583–88
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. An H,
    2. Liu Q,
    3. Chen Y,
    4. et al
    . Evaluation of MR-derived cerebral oxygen metabolic index in experimental hyperoxic hypercapnia, hypoxia, and ischemia. Stroke 2009;40:2165–72
    Abstract/FREE Full Text
  26. 26.↵
    1. Christen T,
    2. Schmiedeskamp H,
    3. Straka M,
    4. et al
    . Measuring brain oxygenation in humans using a multiparametric quantitative blood oxygenation level dependent MRI approach. Magn Reson Med 2012;68:905–11
    CrossRefPubMed
  27. 27.↵
    1. Sobesky J,
    2. Zaro Weber O,
    3. Lehnhardt FG,
    4. et al
    . Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005;36:980–85
    Abstract/FREE Full Text
  28. 28.↵
    1. Tamura H,
    2. Hatazawa J,
    3. Toyoshima H,
    4. et al
    . Detection of deoxygenation-related signal change in acute ischemic stroke patients by T2*-weighted magnetic resonance imaging. Stroke 2002;33:967–71
    Abstract/FREE Full Text
  29. 29.↵
    1. Wardlaw JM,
    2. von Heijne A
    . Increased oxygen extraction demonstrated on gradient echo (T2*) imaging in a patient with acute ischaemic stroke. Cerebrovasc Dis 2006;22:456–58
    CrossRefPubMed
  30. 30.↵
    1. Morita N,
    2. Harada M,
    3. Uno M,
    4. et al
    . Ischemic findings of T2*-weighted 3-Tesla MRI in acute stroke patients. Cerebrovasc Dis 2008;26:367–75
    CrossRefPubMed
  31. 31.↵
    1. Donswijk ML,
    2. Jones PS,
    3. Guadagno JV,
    4. et al
    . T2*-weighted MRI versus oxygen extraction fraction PET in acute stroke. Cerebrovasc Dis 2009;28:306–13
    CrossRefPubMed
  32. 32.↵
    1. Geisler BS,
    2. Brandhoff F,
    3. Fiehler J,
    4. et al
    . Blood-oxygen-level-dependent MRI allows metabolic description of tissue at risk in acute stroke patients. Stroke 2006;37:1778–84
    Abstract/FREE Full Text
  33. 33.↵
    1. Siemonsen S,
    2. Fitting T,
    3. Thomalla G,
    4. et al
    . T2′ imaging predicts infarct growth beyond the acute diffusion-weighted imaging lesion in acute stroke. Radiology 2008;248:979–86
    CrossRefPubMed
  34. 34.↵
    1. Lee J-M,
    2. Vo KD,
    3. An H,
    4. et al
    . Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients. Ann Neurol 2003;53:227–32
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Xie S,
    2. Hui LH,
    3. Xiao JX,
    4. et al
    . Detecting misery perfusion in unilateral steno-occlusive disease of the internal carotid artery or middle cerebral artery by MR imaging. AJNR Am J Neuroradiol 2011;32:1504–09
    Abstract/FREE Full Text
  36. 36.↵
    1. Schmiedeskamp H,
    2. Straka M,
    3. Newbould RD,
    4. et al
    . Combined spin- and gradient-echo perfusion-weighted imaging. Magn Reson Med. 2012;68:30–40
    CrossRefPubMed
  37. 37.↵
    1. Christen T,
    2. Schmiedeskamp H,
    3. Straka M,
    4. et al
    . Rapid measurement of oxygen extraction fraction (OEF) maps using a combined multiple gradient and spin echo bolus contrast sequence. In: Proceedings of the 19th Annual Meeting of International Society for Magnetic Resonance in Medicine, Montreal, Quebec, Canada. May 6–13, 2011
  38. 38.↵
    1. Punwani S,
    2. Ordidge RJ,
    3. Cooper CE,
    4. et al
    . MRI measurements of cerebral deoxyhaemoglobin concentration [dHb]: correlation with near infrared spectroscopy (NIRS). NMR Biomed 1998;11:281–89
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Baudelet C,
    2. Gallez B
    . How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med 2002;48:980–86
    CrossRefPubMed
  40. 40.↵
    1. Chopra S,
    2. Foltz WD,
    3. Milosevic MF,
    4. et al
    . Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: a pilot study in men with prostate cancer. Int J Radiat Biol 2009;85:805–13
    CrossRefPubMed
  41. 41.↵
    1. Hoskin PJ,
    2. Carnell DM,
    3. Taylor NJ,
    4. et al
    . Hypoxia in prostate cancer: correlation of BOLD-MRI with pimonidazole immunohistochemistry—initial observations. Int J Radiat Oncol Biol Phys 2007;68:1065–71
    PubMed
  42. 42.↵
    1. McPhail LD,
    2. Robinson SP
    . Intrinsic susceptibility MR imaging of chemically induced rat mammary tumors: relationship to histologic assessment of hypoxia and fibrosis. Radiology 2010;254:110–18
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Rodrigues LM,
    2. Howe FA,
    3. Griffiths JR,
    4. et al
    . Tumor R2* is a prognostic indicator of acute radiotherapeutic response in rodent tumors. J Magn Reson Imaging 2004;19:482–88
    CrossRefPubMed
  44. 44.↵
    1. Losert C,
    2. Peller M,
    3. Schneider P,
    4. et al
    . Oxygen-enhanced MRI of the brain. Magn Reson Med 2002;48:271–77
    CrossRefPubMedWeb of Science
  45. 45.↵
    1. Howe FA,
    2. Robinson SP,
    3. McIntyre DJ,
    4. et al
    . Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours. NMR Biomed 2001;14:497–506
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Hyder F,
    2. Kida I,
    3. Behar KL,
    4. et al
    . Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI. NMR Biomed 2001;14:413–31
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Bulte D,
    2. Chiarelli P,
    3. Wise R,
    4. et al
    . Measurement of cerebral blood volume in humans using hyperoxic MRI contrast. J Magn Reson Imaging 2007;26:894–99
    CrossRefPubMed
  48. 48.↵
    1. Jochimsen TH,
    2. Ivanov D,
    3. Ott DV,
    4. et al
    . Whole-brain mapping of venous vessel size in humans using the hypercapnia-induced BOLD effect. Neuroimage 2010;51:765–74
    CrossRefPubMed
  49. 49.↵
    1. Santosh C,
    2. Brennan D,
    3. McCabe C,
    4. et al
    . Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra. J Cereb Blood Flow Metab 2008;28:1742–53
    CrossRefPubMed
  50. 50.↵
    1. Dani KA,
    2. Santosh C,
    3. Brennan D,
    4. et al
    . T2*-weighted magnetic resonance imaging with hyperoxia in acute ischemic stroke. Ann Neurol 2010;68:37–47
    CrossRefPubMed
  51. 51.↵
    1. Mikulis DJ,
    2. Krolczyk G,
    3. Desal H,
    4. et al
    . Preoperative and postoperative mapping of cerebrovascular reactivity in Moyamoya disease by using blood oxygen level-dependent magnetic resonance imaging. J Neurosurg 2005;103:347–55
    PubMed
  52. 52.↵
    1. Mandell DM,
    2. Han JS,
    3. Poublanc J,
    4. et al
    . Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke 2008;39:2021–28
    Abstract/FREE Full Text
  53. 53.↵
    1. Mandell DM,
    2. Han JS,
    3. Poublanc J,
    4. et al
    . Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent MR imaging in patients with intracranial stenosis: preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery. AJNR Am J Neuroradiol 2011;32:721–27
    Abstract/FREE Full Text
  54. 54.↵
    1. Taylor NJ,
    2. Baddeley H,
    3. Goodchild KA,
    4. et al
    . BOLD MRI of human tumor oxygenation during carbogen breathing. J Magn Reson Imaging 2001;14:156–63
    CrossRefPubMed
  55. 55.↵
    1. Al-Hallaq HA,
    2. River JN,
    3. Zamora M,
    4. et al
    . Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumor oxygenation. Int J Radiat Oncol Biol Phys 1998;41:151–59
    PubMed
  56. 56.↵
    1. Dunn JF,
    2. O'Hara JA,
    3. Zaim-Wadghiri Y,
    4. et al
    . Changes in oxygenation of intracranial tumors with carbogen: a BOLD MRI and EPR oximetry study. J Magn Reson Imaging 2002;16:511–21
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Zhao D,
    2. Jiang L,
    3. Hahn EW,
    4. et al
    . Comparison of 1H blood oxygen level-dependent (BOLD) and 19F MRI to investigate tumor oxygenation. Magn Reson Med 2009;62:357–64
    CrossRefPubMed
  58. 58.↵
    1. Padhani AR,
    2. Krohn KA,
    3. Lewis JS,
    4. et al
    . Imaging oxygenation of human tumours. Eur Radiol 2007;17:861–72
    CrossRefPubMed
  59. 59.↵
    1. O'Connor JP,
    2. Naish JH,
    3. Parker GJM,
    4. et al
    . Preliminary study of oxygen-enhanced longitudinal relaxation in MRI: a potential novel biomarker of oxygenation changes in solid tumors. Int J Radiat Oncol Biol Phys 2009;75:1209–15
    PubMed
  60. 60.↵
    1. O'Connor JPB,
    2. Naish JH,
    3. Jackson A,
    4. et al
    . Comparison of normal tissue R1 and R*2 modulation by oxygen and carbogen. Magn Reson Med 2009;61:75–83
    CrossRefPubMed
  61. 61.↵
    1. Duyn JH,
    2. van Gelderen P,
    3. Li T-Q,
    4. et al
    . High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 2007;104:11796–801
    Abstract/FREE Full Text
  62. 62.↵
    1. Weisskoff RM,
    2. Kiihne S
    . MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents and human blood. Magn Reson Med 1992;24:375–83
    PubMed
  63. 63.↵
    1. Fernández-Seara MA,
    2. Techawiboonwong A,
    3. Detre JA,
    4. et al
    . MR susceptometry for measuring global brain oxygen extraction. Magn Reson Med 2006;55:967–73
    CrossRefPubMedWeb of Science
  64. 64.↵
    1. Haacke EM,
    2. Lai S,
    3. Reichenbach JR,
    4. et al
    . In vivo measurement of blood oxygen saturation using magnetic resonance imaging: a direct validation of the blood oxygen level-dependent concept in functional brain imaging. Hum Brain Mapp 1997;5:341–46
    CrossRefPubMedWeb of Science
  65. 65.↵
    1. Bryant DJ,
    2. Payne JA,
    3. Firmin DN,
    4. et al
    . Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 1984;8:588–93
    PubMedWeb of Science
  66. 66.↵
    1. Jain V,
    2. Langham MC,
    3. Wehrli FW
    . MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab 2010;30:1598–607
    CrossRefPubMed
  67. 67.↵
    1. Langham MC,
    2. Magland JF,
    3. Floyd TF,
    4. et al
    . Retrospective correction for induced magnetic field inhomogeneity in measurements of large-vessel hemoglobin oxygen saturation by MR susceptometry. Magn Reson Med 2009;61:626–33
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Langham MC,
    2. Magland JF,
    3. Epstein CL,
    4. et al
    . Accuracy and precision of MR blood oximetry based on the long paramagnetic cylinder approximation of large vessels. Magn Reson Med 2009;62:333–40
    CrossRefPubMedWeb of Science
  69. 69.↵
    1. Fan AP,
    2. Benner T,
    3. Bolar DS,
    4. et al
    . Phase-based regional oxygen metabolism (PROM) using MRI. Magn Reson Med 2012;67:669–78
    CrossRefPubMed
  70. 70.↵
    1. Marques JP,
    2. Bowtell R
    . Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn Reson 2005;25B:65–78
  71. 71.↵
    1. Koch KM,
    2. Papademetris X,
    3. Rothman DL,
    4. et al
    . Rapid calculations of susceptibility-induced magnetostatic field perturbations for in vivo magnetic resonance. Phys Med Biol 2006;51:6381–402
    CrossRefPubMed
  72. 72.↵
    1. Shmueli K,
    2. de Zwart JA,
    3. van Gelderen P,
    4. et al
    . Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 2009;62:1510–22
    CrossRefPubMedWeb of Science
  73. 73.↵
    1. Wharton S,
    2. Schäfer A,
    3. Bowtell R
    . Susceptibility mapping in the human brain using threshold-based k-space division. Magn Reson Med 2010;63:1292–304
    CrossRefPubMed
  74. 74.↵
    1. Liu T,
    2. Spincemaille P,
    3. de Rochefort L,
    4. et al
    . Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 2009;61:196–204
    CrossRefPubMed
  75. 75.↵
    1. Wharton S,
    2. Bowtell R
    . Whole-brain susceptibility mapping at high field: a comparison of multiple- and single-orientation methods. Neuroimage 2010;53:515–25
    CrossRefPubMed
  76. 76.↵
    1. de Rochefort L,
    2. Liu T,
    3. Kressler B,
    4. et al
    . Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application to brain imaging. Magn Reson Med 2010;63:194–206
    PubMed
  77. 77.↵
    1. Li W,
    2. Wu B,
    3. Liu C
    . Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage 2011;55:1645–56
    CrossRefPubMed
  78. 78.↵
    1. Haacke EM,
    2. Tang J,
    3. Neelavalli J,
    4. et al
    . Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 2010;32:663–76
    CrossRefPubMed
  79. 79.↵
    1. Wright GA,
    2. Hu BS,
    3. Macovski A
    . 1991 I.I. Rabi Award: estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging 1991;1:275–83
    PubMedWeb of Science
  80. 80.↵
    1. Golay X,
    2. Silvennoinen MJ,
    3. Zhou J,
    4. et al
    . Measurement of tissue oxygen extraction ratios from venous blood T(2): increased precision and validation of principle. Magn Reson Med 2001;46:282–91
    CrossRefPubMed
  81. 81.↵
    1. van Zijl PC,
    2. Eleff SM,
    3. Ulatowski JA,
    4. et al
    . Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat Med 1998;4:159–67
    CrossRefPubMedWeb of Science
  82. 82.↵
    1. Oja JM,
    2. Gillen JS,
    3. Kauppinen RA,
    4. et al
    . Determination of oxygen extraction ratios by magnetic resonance imaging. J Cereb Blood Flow Metab 1999;19:1289–95
    CrossRefPubMed
  83. 83.↵
    1. Lu H,
    2. Xu F,
    3. Grgac K,
    4. et al
    . Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation. Magn Reson Med 2012;67:42–49
    CrossRefPubMed
  84. 84.↵
    1. Lu H,
    2. Ge Y
    . Quantitative evaluation of oxygenation in venous vessels using T2-Relaxation-Under-Spin-Tagging MRI. Magn Reson Med 2008;60:357–63
    CrossRefPubMedWeb of Science
  85. 85.↵
    1. Buxton R
    . Introduction to Functional Magnetic Resonance Imaging. New York: Cambridge University Press; 2002
  86. 86.↵
    1. Xu F,
    2. Ge Y,
    3. Lu H
    . Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med 2009;62:141–48
    CrossRefPubMed
  87. 87.↵
    1. Bolar DS,
    2. Rosen BR,
    3. Sorensen AG,
    4. et al
    . QUantitative Imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling. Magn Reson Med 2011;66:1550–62
    CrossRefPubMed
  88. 88.↵
    1. Wong EC,
    2. Cronin M,
    3. Wu WC,
    4. et al
    . Velocity-selective arterial spin labeling. Magn Reson Med 2006;55:1334–41
    CrossRefPubMed
  89. 89.↵
    1. Christen T,
    2. Zaharchuk G,
    3. Pannetier N,
    4. et al
    . Quantitative MR estimates of blood oxygenation based on T2*: a numerical study of the impact of model assumptions. Magn Reson Med 2011 Dec 19. [Epub ahead of print]
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 34 (6)
American Journal of Neuroradiology
Vol. 34, Issue 6
1 Jun 2013
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Imaging Brain Oxygenation with MRI Using Blood Oxygenation Approaches: Methods, Validation, and Clinical Applications
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
T. Christen, D.S. Bolar, G. Zaharchuk
Imaging Brain Oxygenation with MRI Using Blood Oxygenation Approaches: Methods, Validation, and Clinical Applications
American Journal of Neuroradiology Jun 2013, 34 (6) 1113-1123; DOI: 10.3174/ajnr.A3070

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Imaging Brain Oxygenation with MRI Using Blood Oxygenation Approaches: Methods, Validation, and Clinical Applications
T. Christen, D.S. Bolar, G. Zaharchuk
American Journal of Neuroradiology Jun 2013, 34 (6) 1113-1123; DOI: 10.3174/ajnr.A3070
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • BOLD Effect
    • Quantifying the BOLD Effect
    • Different qBOLD Approaches
    • BOLD-Based Oxygenation Measurements in Health and Disease
    • Challenge Paradigms
    • Using MR Phase to Measure Oxygenation
    • Using Intravascular T2 to Measure Oxygenation
    • TRUST
    • QUIXOTIC
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Spatially resolved quantification of oxygen consumption rate in ex vivo lymph node slices
  • MR Thermometry in Cerebrovascular Disease: Physiologic Basis, Hemodynamic Dependence, and a New Frontier in Stroke Imaging
  • Comparison of Blood Oxygenation Level-Dependent fMRI and Provocative DSC Perfusion MR Imaging for Monitoring Cerebrovascular Reserve in Intracranial Chronic Cerebrovascular Disease
  • Preoperative Cerebral Oxygen Extraction Fraction Imaging Generated from 7T MR Quantitative Susceptibility Mapping Predicts Development of Cerebral Hyperperfusion following Carotid Endarterectomy
  • The Brain Thermal Response as a Potential Neuroimaging Biomarker of Cerebrovascular Impairment
  • Long-Delay Arterial Spin Labeling Provides More Accurate Cerebral Blood Flow Measurements in Moyamoya Patients: A Simultaneous Positron Emission Tomography/MRI Study
  • Noninvasive Assessment of Oxygen Extraction Fraction in Chronic Ischemia Using Quantitative Susceptibility Mapping at 7 Tesla
  • Crossref (89)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Oxygen‐Sensing Methods in Biomedicine from the Macroscale to the Microscale
    Emmanuel Roussakis, Zongxi Li, Alexander J. Nichols, Conor L. Evans
    Angewandte Chemie International Edition 2015 54 29
  • Quantitative oxygenation venography from MRI phase
    Audrey P. Fan, Berkin Bilgic, Louis Gagnon, Thomas Witzel, Himanshu Bhat, Bruce R. Rosen, Elfar Adalsteinsson
    Magnetic Resonance in Medicine 2014 72 1
  • Advanced MRI techniques to improve our understanding of experience-induced neuroplasticity
    Christine Lucas Tardif, Claudine Joëlle Gauthier, Christopher John Steele, Pierre-Louis Bazin, Andreas Schäfer, Alexander Schaefer, Robert Turner, Arno Villringer
    NeuroImage 2016 131
  • Long-Delay Arterial Spin Labeling Provides More Accurate Cerebral Blood Flow Measurements in Moyamoya Patients
    Audrey P. Fan, Jia Guo, Mohammad M. Khalighi, Praveen K. Gulaka, Bin Shen, Jun Hyung Park, Harsh Gandhi, Dawn Holley, Omar Rutledge, Prachi Singh, Tom Haywood, Gary K. Steinberg, Frederick T. Chin, Greg Zaharchuk
    Stroke 2017 48 9
  • High Resolution Imaging of Viscoelastic Properties of Intracranial Tumours by Multi-Frequency Magnetic Resonance Elastography
    M. Reiss-Zimmermann, K.-J. Streitberger, I. Sack, J. Braun, F. Arlt, D. Fritzsch, K.-T. Hoffmann
    Clinical Neuroradiology 2015 25 4
  • BOLD signal physiology: Models and applications
    C.J. Gauthier, A.P. Fan
    NeuroImage 2019 187
  • Neuroimaging of vascular reserve in patients with cerebrovascular diseases
    Meher R. Juttukonda, Manus J. Donahue
    NeuroImage 2019 187
  • Separation of cellular and BOLD contributions to T2* signal relaxation
    Xialing Ulrich, Dmitriy A. Yablonskiy
    Magnetic Resonance in Medicine 2016 75 2
  • Biomarkers, designs, and interpretations of resting‐state fMRI in translational pharmacological research: A review of state‐of‐the‐Art, challenges, and opportunities for studying brain chemistry
    Najmeh Khalili‐Mahani, Serge A.R.B. Rombouts, Matthias J.P. van Osch, Eugene P. Duff, Felix Carbonell, Lisa D. Nickerson, Lino Becerra, Albert Dahan, Alan C Evans, Jean‐Paul Soucy, Richard Wise, Alex P. Zijdenbos, Joop M. van Gerven
    Human Brain Mapping 2017 38 4
  • Vessel calibre—a potential MRI biomarker of tumour response in clinical trials
    Kyrre E. Emblem, Christian T. Farrar, Elizabeth R. Gerstner, Tracy T. Batchelor, Ronald J. H. Borra, Bruce R. Rosen, A. Gregory Sorensen, Rakesh K. Jain
    Nature Reviews Clinical Oncology 2014 11 10

More in this TOC Section

  • Mechanisms of Healing in Coiled Intracranial Aneurysms: A Review of the Literature
  • Ultra-High-Field MR Neuroimaging
  • 4D-CTA in Neurovascular Disease: A Review
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire