Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Review ArticleReview Articles
Open Access

CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment

J. Xiang, V.M. Tutino, K.V. Snyder and H. Meng
American Journal of Neuroradiology October 2014, 35 (10) 1849-1857; DOI: https://doi.org/10.3174/ajnr.A3710
J. Xiang
aFrom the Toshiba Stroke and Vascular Research Center (J.X., V.M.T., K.V.S., H.M.)
bDepartments of Neurosurgery (J.X.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V.M. Tutino
aFrom the Toshiba Stroke and Vascular Research Center (J.X., V.M.T., K.V.S., H.M.)
cBiomedical Engineering (V.M.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.V. Snyder
aFrom the Toshiba Stroke and Vascular Research Center (J.X., V.M.T., K.V.S., H.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Meng
aFrom the Toshiba Stroke and Vascular Research Center (J.X., V.M.T., K.V.S., H.M.)
dMechanical and Aerospace Engineering (H.M.), University at Buffalo, State University of New York, Buffalo, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Jou LD,
    2. Wong G,
    3. Dispensa B, et al
    . Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am J Neuroradiol 2005;26:2357–63
    Abstract/FREE Full Text
  2. 2.↵
    1. Acevedo-Bolton G,
    2. Jou LD,
    3. Dispensa BP, et al
    . Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: technical case report. Neurosurgery 2006;59:E429–30
    CrossRefPubMed
  3. 3.↵
    1. Sugiyama SI,
    2. Meng H,
    3. Funamoto K, et al
    . Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. World Neurosurg 2012;78:462–68
    CrossRefPubMed
  4. 4.↵
    1. Xiang J,
    2. Natarajan SK,
    3. Tremmel M, et al
    . Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 2011;42:144–52
    Abstract/FREE Full Text
  5. 5.↵
    1. Cebral JR,
    2. Mut F,
    3. Weir J, et al
    . Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol 2011;32:145–51
    Abstract/FREE Full Text
  6. 6.↵
    1. Steinman DA
    . Computational modeling and flow diverters: a teaching moment. AJNR Am J Neuroradiol 2011;32:981–83
    FREE Full Text
  7. 7.↵
    1. Kallmes DF
    . Point: CFD–computational fluid dynamics or confounding factor dissemination. AJNR Am J Neuroradiol 2012;33:395–96
    FREE Full Text
  8. 8.↵
    1. Cebral JR,
    2. Meng H
    . Counterpoint: realizing the clinical utility of computational fluid dynamics–closing the gap. AJNR Am J Neuroradiol 2012;33:396–98
    FREE Full Text
  9. 9.↵
    1. Robertson AM,
    2. Watton PN
    . Computational fluid dynamics in aneurysm research: critical reflections, future directions. AJNR Am J Neuroradiol 2012;33:992–95
    FREE Full Text
  10. 10.↵
    1. Strother CM,
    2. Jiang J
    . Intracranial aneurysms, cancer, x-rays, and computational fluid dynamics. AJNR Am J Neuroradiol 2012;33:991–92
    FREE Full Text
  11. 11.↵
    1. Meng H,
    2. Tutino VM,
    3. Xiang J, et al
    . High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 2014;35:1254–62
    Abstract/FREE Full Text
  12. 12.↵
    1. Shojima M,
    2. Oshima M,
    3. Takagi K, et al
    . Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 2004;35:2500–05
    Abstract/FREE Full Text
  13. 13.↵
    1. Jou LD,
    2. Lee DH,
    3. Morsi H, et al
    . Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol 2008;29:1761–67
    Abstract/FREE Full Text
  14. 14.↵
    1. Meng H,
    2. Wang Z,
    3. Hoi Y, et al
    . Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 2007;38:1924–31
    Abstract/FREE Full Text
  15. 15.↵
    1. Metaxa E,
    2. Tremmel M,
    3. Natarajan SK, et al
    . Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke 2010;41:1774–82
    Abstract/FREE Full Text
  16. 16.↵
    1. Malek AM,
    2. Alper SL,
    3. Izumo S
    . Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035–42
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Boussel L,
    2. Rayz V,
    3. McCulloch C, et al
    . Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 2008;39:2997–3002
    Abstract/FREE Full Text
  18. 18.↵
    1. Tateshima S,
    2. Tanishita K,
    3. Omura H, et al
    . Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: in vitro study using longitudinal CT angiogram database. AJNR Am J Neuroradiol 2007;28:622–27
    Abstract/FREE Full Text
  19. 19.↵
    1. Sforza DM,
    2. Putman CM,
    3. Tateshima S, et al
    . Hemodynamics characteristics of growing and stable aneurysms. ASME Summer Bioengineering Conference, Fajardo, Puerto Rico, June 20–23, 2012
  20. 20.↵
    1. Cebral JR,
    2. Castro MA,
    3. Burgess JE, et al
    . Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am J Neuroradiol 2005;26:2550–59
    Abstract/FREE Full Text
  21. 21.↵
    1. Hassan T,
    2. Timofeev EV,
    3. Saito T, et al
    . A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture. J Neurosurg 2005;103:662–80
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Castro M,
    2. Putman C,
    3. Radaelli A, et al
    . Hemodynamics and rupture of terminal cerebral aneurysms. Acad Radiol 2009;16:1201–07
    CrossRefPubMed
  23. 23.↵
    1. Castro MA,
    2. Putman CM,
    3. Sheridan MJ, et al
    . Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. AJNR Am J Neuroradiol 2009;30:297–302
    Abstract/FREE Full Text
  24. 24.↵
    1. Chien A,
    2. Castro MA,
    3. Tateshima S, et al
    . Quantitative hemodynamic analysis of brain aneurysms at different locations. AJNR Am J Neuroradiol 2009;30:1507–12
    Abstract/FREE Full Text
  25. 25.↵
    1. Chien A,
    2. Tateshima S,
    3. Sayre J, et al
    . Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms. Surg Neurol 2009;72:444–50
    CrossRefPubMed
  26. 26.↵
    1. Cebral JR,
    2. Sheridan M,
    3. Putman CM
    . Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am J Neuroradiol 2010;31:304–10
    Abstract/FREE Full Text
  27. 27.↵
    1. Lu G,
    2. Huang L,
    3. Zhang XL, et al
    . Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation. AJNR Am J Neuroradiol 2011;32:1255–61
    Abstract/FREE Full Text
  28. 28.↵
    1. Qian Y,
    2. Takao H,
    3. Umezu M, et al
    . Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results. AJNR Am J Neuroradiol 2011;32:1948–55
    Abstract/FREE Full Text
  29. 29.↵
    1. Zhang Y,
    2. Mu S,
    3. Chen J, et al
    . Hemodynamic analysis of intracranial aneurysms with daughter blebs. Eur Neurol 2011;66:359–67
    CrossRefPubMed
  30. 30.↵
    1. Goubergrits L,
    2. Schaller J,
    3. Kertzscher U, et al
    . Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. J R Soc Interface 2012;9:677–88
    Abstract/FREE Full Text
  31. 31.↵
    1. Takao H,
    2. Murayama Y,
    3. Otsuka S, et al
    . Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke 2012;43:1436–39
    Abstract/FREE Full Text
  32. 32.↵
    1. Hoi Y,
    2. Meng H,
    3. Woodward SH, et al
    . Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J Neurosurg 2004;101:676–81
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Shojima M,
    2. Oshima M,
    3. Takagi K, et al
    . Role of the bloodstream impacting force and the local pressure elevation in the rupture of cerebral aneurysms. Stroke 2005;36:1933–38
    Abstract/FREE Full Text
  34. 34.↵
    1. Valencia A,
    2. Morales H,
    3. Rivera R, et al
    . Blood flow dynamics in patient-specific cerebral aneurysm models: the relationship between wall shear stress and aneurysm area index. Med Eng Phys 2008;30:329–40
    CrossRefPubMed
  35. 35.↵
    1. Omodaka S,
    2. Sugiyama S,
    3. Inoue T, et al
    . Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc Dis 2012;34:121–29
    CrossRefPubMed
  36. 36.↵
    1. Kawaguchi T,
    2. Kanamori M,
    3. Takazawa H, et al
    . Flow dynamics analysis in patients with a ruptured middle cerebral artery aneurysm: a case report. No Shinkei Geka 2011;39:281–86
    PubMed
  37. 37.↵
    1. Miura Y,
    2. Ishida F,
    3. Umeda Y, et al
    . Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms. Stroke 2013;44:519–21
    Abstract/FREE Full Text
  38. 38.↵
    1. Xu J,
    2. Yu Y,
    3. Wu X, et al
    . Morphological and hemodynamic analysis of mirror posterior communicating artery aneurysms. PloS One 2013;8:e55413
    CrossRefPubMed
  39. 39.↵
    1. Antiga L,
    2. Piccinelli M,
    3. Botti L, et al
    . An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 2008;46:1097–112
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Geers AJ,
    2. Larrabide I,
    3. Radaelli AG, et al
    . Patient-specific computational hemodynamics of intracranial aneurysms from 3D rotational angiography and CT angiography: an in vivo reproducibility study. AJNR Am J Neuroradiol 2011;32:581–86
    Abstract/FREE Full Text
  41. 41.↵
    1. Morales HG,
    2. Kim M,
    3. Vivas EE, et al
    . How do coil configuration and packing density influence intra-aneurysmal hemodynamics? AJNR Am J Neuroradiol 2011;32:1935–41
    Abstract/FREE Full Text
  42. 42.↵
    1. Marzo A,
    2. Singh P,
    3. Larrabide I, et al
    . Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions. Ann Biomed Eng 2011;39:884–96
    CrossRefPubMed
  43. 43.↵
    1. Cebral JR,
    2. Mut F,
    3. Weir J, et al
    . Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol 2011;32:264–70
    Abstract/FREE Full Text
  44. 44.↵
    1. Steinman DA,
    2. Milner JS,
    3. Norley CJ, et al
    . Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol 2003;24:559–66
    Abstract/FREE Full Text
  45. 45.↵
    1. Humphrey JD,
    2. Taylor CA
    . Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu Rev Biomed Eng 2008;10:221–46
    CrossRefPubMedWeb of Science
  46. 46.↵
    1. Nixon AM,
    2. Gunel M,
    3. Sumpio BE
    . The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg 2010;112:1240–53
    CrossRefPubMedWeb of Science
  47. 47.↵
    1. Ota R,
    2. Kurihara C,
    3. Tsou TL, et al
    . Roles of matrix metalloproteinases in flow-induced outward vascular remodeling. J Cereb Blood Flow Metab 2009;29:1547–58
    CrossRefPubMed
  48. 48.↵
    1. Frosen J,
    2. Tulamo R,
    3. Paetau A, et al
    . Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol 2012;123:773–86
    CrossRefPubMedWeb of Science
  49. 49.↵
    1. Wang Z,
    2. Kolega J,
    3. Hoi Y, et al
    . Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation. Neurosurgery 2009;65:169–77
    CrossRefPubMedWeb of Science
  50. 50.↵
    1. Kolega J,
    2. Gao L,
    3. Mandelbaum M, et al
    . Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J Vasc Res 2011;48:429–42
    CrossRefPubMed
  51. 51.↵
    1. Watton PN,
    2. Selimovic A,
    3. Raberger NB, et al
    . Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms. Biomech Modeling Mechanobiol 2011;10:109–32
    CrossRef
  52. 52.↵
    1. Cardenes R,
    2. Pozo JM,
    3. Bogunovic H, et al
    . Automatic aneurysm neck detection using surface Voronoi diagrams. IEEE Trans Med Imaging 2011;30:1863–76
    CrossRefPubMed
  53. 53.↵
    1. Larrabide I,
    2. Cruz Villa-Uriol M,
    3. Cardenes R, et al
    . Three-dimensional morphological analysis of intracranial aneurysms: a fully automated method for aneurysm sac isolation and quantification. Med Physics 2011;38:2439–49
    CrossRefPubMed
  54. 54.↵
    1. Dhar S,
    2. Tremmel M,
    3. Mocco J, et al
    . Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 2008;63:185–96
    CrossRefPubMedWeb of Science
  55. 55.↵
    1. Rahman M,
    2. Smietana J,
    3. Hauck E, et al
    . Size ratio correlates with intracranial aneurysm rupture status: a prospective study. Stroke 2010;41:916–20
    Abstract/FREE Full Text
  56. 56.↵
    1. Ma D,
    2. Tremmel M,
    3. Paluch RA, et al
    . Size ratio for clinical assessment of intracranial aneurysm rupture risk. Neurol Res 2010;32:482–86
    CrossRefPubMed
  57. 57.↵
    1. Dolan JM,
    2. Meng H,
    3. Singh S, et al
    . High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Ann Biomed Eng 2011;39:1620–31
    CrossRefPubMedWeb of Science
  58. 58.↵
    1. LaMack JA,
    2. Friedman MH
    . Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am J Physiol Heart Circ Physiol 2007;293:H2853–59
    Abstract/FREE Full Text
  59. 59.↵
    1. He X,
    2. Ku DN
    . Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 1996;118:74–82
    CrossRefPubMedWeb of Science
  60. 60.↵
    1. Shimogonya Y,
    2. Ishikawa T,
    3. Imai Y, et al
    . Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J Biomech 2009;42:550–54
    CrossRefPubMedWeb of Science
  61. 61.↵
    1. Chien A,
    2. Tateshima S,
    3. Castro M, et al
    . Patient-specific flow analysis of brain aneurysms at a single location: comparison of hemodynamic characteristics in small aneurysms. Med Biol Eng Comput 2008;46:1113–20
    CrossRefPubMed
  62. 62.
    1. Kawaguchi T,
    2. Nishimura S,
    3. Kanamori M, et al
    . Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs. J Neurosurg 2012;117:774–80
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 35 (10)
American Journal of Neuroradiology
Vol. 35, Issue 10
1 Oct 2014
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J. Xiang, V.M. Tutino, K.V. Snyder, H. Meng
CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
American Journal of Neuroradiology Oct 2014, 35 (10) 1849-1857; DOI: 10.3174/ajnr.A3710

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
CFD: Computational Fluid Dynamics or Confounding Factor Dissemination? The Role of Hemodynamics in Intracranial Aneurysm Rupture Risk Assessment
J. Xiang, V.M. Tutino, K.V. Snyder, H. Meng
American Journal of Neuroradiology Oct 2014, 35 (10) 1849-1857; DOI: 10.3174/ajnr.A3710
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Flow-based simulation in transverse sinus stenosis pre- and post-stenting: pressure prediction accuracy, hemodynamic complexity, and relationship to pulsatile tinnitus
  • Using angiographic parametric imaging-derived radiomics features to predict complications and embolization outcomes of intracranial aneurysms treated by pipeline embolization devices
  • Intracranial Aneurysm Wall Displacement Predicts Instability
  • Comment on "Blood Flow Mimicking Aneurysmal Wall Enhancement: A Diagnostic Pitfall of Vessel Wall MRI Using the Postcontrast 3D Turbo Spin-Echo MR Imaging Sequence"
  • Critical role of angiographic acquisition modality and reconstruction on morphometric and haemodynamic analysis of intracranial aneurysms
  • A new combined parameter predicts re-treatment for coil-embolized aneurysms: a computational fluid dynamics multivariable analysis study
  • Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations
  • Differences in Morphologic and Hemodynamic Characteristics for "PHASES-Based" Intracranial Aneurysm Locations
  • Clinical, morphological, and hemodynamic independent characteristic factors for rupture of posterior communicating artery aneurysms
  • Hemodynamic characteristics of large unruptured internal carotid artery aneurysms prior to rupture: a case control study
  • Hemodynamic-morphological discriminant models for intracranial aneurysm rupture remain stable with increasing sample size
  • Hemodynamic Differences in Intracranial Aneurysms before and after Rupture
  • Changes of Time-Attenuation Curve Blood Flow Parameters in Patients with and without Carotid Stenosis
  • The Computational Fluid Dynamics Rupture Challenge 2013--Phase I: Prediction of Rupture Status in Intracranial Aneurysms
  • Crossref (160)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture
    Sauson Soldozy, Pedro Norat, Mazin Elsarrag, Ajay Chatrath, John S. Costello, Jennifer D. Sokolowski, Petr Tvrdik, M. Yashar S. Kalani, Min S. Park
    Neurosurgical Focus 2019 47 1
  • What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review
    Khalid M Saqr, Sherif Rashad, Simon Tupin, Kuniyasu Niizuma, Tamer Hassan, Teiji Tominaga, Makoto Ohta
    Journal of Cerebral Blood Flow & Metabolism 2020 40 5
  • The Computational Fluid Dynamics Rupture Challenge 2013—Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms
    Philipp Berg, Christoph Roloff, Oliver Beuing, Samuel Voss, Shin-Ichiro Sugiyama, Nicolas Aristokleous, Andreas S. Anayiotos, Neil Ashton, Alistair Revell, Neil W. Bressloff, Alistair G. Brown, Bong Jae Chung, Juan R. Cebral, Gabriele Copelli, Wenyu Fu, Aike Qiao, Arjan J. Geers, Simona Hodis, Dan Dragomir-Daescu, Emily Nordahl, Yildirim Bora Suzen, Muhammad Owais Khan, Kristian Valen-Sendstad, Kenichi Kono, Prahlad G. Menon, Priti G. Albal, Otto Mierka, Raphael Münster, Hernán G. Morales, Odile Bonnefous, Jan Osman, Leonid Goubergrits, Jordi Pallares, Salvatore Cito, Alberto Passalacqua, Senol Piskin, Kerem Pekkan, Susana Ramalho, Nelson Marques, Stéphane Sanchi, Kristopher R. Schumacher, Jess Sturgeon, Helena Švihlová, Jaroslav Hron, Gabriel Usera, Mariana Mendina, Jianping Xiang, Hui Meng, David A. Steinman, Gábor Janiga
    Journal of Biomechanical Engineering 2015 137 12
  • Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis
    Geng Zhou, Yueqi Zhu, Yanling Yin, Ming Su, Minghua Li
    Scientific Reports 2017 7 1
  • Morphologic and Hemodynamic Analysis in the Patients with Multiple Intracranial Aneurysms: Ruptured versus Unruptured
    Linkai Jing, Jixing Fan, Yang Wang, Haiyun Li, Shengzhang Wang, Xinjian Yang, Ying Zhang, Helena Kuivaniemi
    PLOS ONE 2015 10 7
  • The Computational Fluid Dynamics Rupture Challenge 2013—Phase I: Prediction of Rupture Status in Intracranial Aneurysms
    G. Janiga, P. Berg, S. Sugiyama, K. Kono, D.A. Steinman
    American Journal of Neuroradiology 2015 36 3
  • Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): Phase I: Segmentation
    Philipp Berg, Samuel Voß, Sylvia Saalfeld, Gábor Janiga, Aslak W. Bergersen, Kristian Valen-Sendstad, Jan Bruening, Leonid Goubergrits, Andreas Spuler, Nicole M. Cancelliere, David A. Steinman, Vitor M. Pereira, Tin Lok Chiu, Anderson Chun On Tsang, Bong Jae Chung, Juan R. Cebral, Salvatore Cito, Jordi Pallarès, Gabriele Copelli, Benjamin Csippa, György Paál, Soichiro Fujimura, Hiroyuki Takao, Simona Hodis, Georg Hille, Christof Karmonik, Saba Elias, Kerstin Kellermann, Muhammad Owais Khan, Alison L. Marsden, Hernán G. Morales, Senol Piskin, Ender A. Finol, Mariya Pravdivtseva, Hamidreza Rajabzadeh-Oghaz, Nikhil Paliwal, Hui Meng, Santhosh Seshadhri, Matthew Howard, Masaaki Shojima, Shin-ichiro Sugiyama, Kuniyasu Niizuma, Sergey Sindeev, Sergey Frolov, Thomas Wagner, Alexander Brawanski, Yi Qian, Yu-An Wu, Kent D. Carlson, Dan Dragomir-Daescu, Oliver Beuing
    Cardiovascular Engineering and Technology 2018 9 4
  • How patient specific are patient-specific computational models of cerebral aneurysms? An overview of sources of error and variability
    David A. Steinman, Vitor M. Pereira
    Neurosurgical Focus 2019 47 1
  • Hemodynamic–morphological discriminant models for intracranial aneurysm rupture remain stable with increasing sample size
    Jianping Xiang, Jihnhee Yu, Kenneth V Snyder, Elad I Levy, Adnan H Siddiqui, Hui Meng
    Journal of NeuroInterventional Surgery 2016 8 1
  • Rupture Resemblance Score (RRS): toward risk stratification of unruptured intracranial aneurysms using hemodynamic–morphological discriminants
    Jianping Xiang, Jihnhee Yu, Hoon Choi, Jennifer M Dolan Fox, Kenneth V Snyder, Elad I Levy, Adnan H Siddiqui, Hui Meng
    Journal of NeuroInterventional Surgery 2015 7 7

More in this TOC Section

  • Mechanisms of Healing in Coiled Intracranial Aneurysms: A Review of the Literature
  • Ultra-High-Field MR Neuroimaging
  • Armies of Pestilence: CNS Infections as Potential Weapons of Mass Destruction
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire