Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Research ArticleWhite Paper

Artificial Intelligence in Neuroradiology: Current Status and Future Directions

Y.W. Lui, P.D. Chang, G. Zaharchuk, D.P. Barboriak, A.E. Flanders, M. Wintermark, C.P. Hess and C.G. Filippi
American Journal of Neuroradiology August 2020, 41 (8) E52-E59; DOI: https://doi.org/10.3174/ajnr.A6681
Y.W. Lui
aFrom the Department of Radiology (Y.W.L.), New York University Langone Medical Center, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y.W. Lui
P.D. Chang
bDepartment of Radiology (P.D.C.), University of California Irvine Health Medical Center, Orange, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.D. Chang
G. Zaharchuk
cDepartment of Neuroradiology (G.Z., M.W.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Zaharchuk
D.P. Barboriak
dDepartment of Radiology (D.P.B.), Duke University Medical Center, Durham, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.P. Barboriak
A.E. Flanders
eDepartment of Radiology (A.E.F.), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.E. Flanders
M. Wintermark
cDepartment of Neuroradiology (G.Z., M.W.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Wintermark
C.P. Hess
fDepartment of Radiology and Biomedical Imaging (C.P.H.), University of California, San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.P. Hess
C.G. Filippi
gDepartment of Radiology (C.G.F.), Northwell Health, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.G. Filippi
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Pesapane F,
    2. Codari M,
    3. Sardanelli F
    . Artificial intelligence in machine learning: threat or opportunity? Radiologists again at the forefront of innovation. Eur Radiol Exp 2018;2:35 doi:10.1186/s41747-018-0061-6 pmid:30353365
    CrossRefPubMed
  2. 2.↵
    1. Balasubramanian S
    . Artificial Intelligence is Not Ready for the Intricacies of Radiology. Forbes https://www.forbes.com/sites/saibala/2020/02/03/artificial-intelligence-is-not-ready-for-the-intricacies-of-radiology/#bc4b92b67eb1. February 3, 2020. Accessed March 15, 2020
  3. 3.↵
    1. Curtis C,
    2. Liu C,
    3. Bollerman TJ, et al
    . Machine learning for predicting patient wait times and appointment delays. J Am Coll Radiol 2018;15:1310–16 doi:10.1016/j.jacr.2017.08.021 pmid:29079248
    CrossRefPubMed
  4. 4.↵
    1. Ginat DT
    . Analysis of head CT flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology 2020;62:335–40 doi:10.1007/s00234-019-02330-w pmid:31828361
    CrossRefPubMed
  5. 5.↵
    1. Kuo W,
    2. Häne C,
    3. Mukherjee P, et al
    . Expert-level detection of acute intracranial hemorrhage on computed tomography using deep learning. Proc Natl Acad Sci USA 2019;116:22737–45 doi:10.1073/pnas.1908021116 pmid:31636195
    Abstract/FREE Full Text
  6. 6.↵
    1. Chang PD,
    2. Kuoy E,
    3. Grinband J, et al
    . Hybrid 3D/2D convolutional neural network for hemorrhage evaluation on head CT. AJNR Am J Neuroradiol 2018;39:1609–16 doi:10.3174/ajnr.A5742 pmid:30049723
    Abstract/FREE Full Text
  7. 7.↵
    1. Cho J,
    2. Park KS,
    3. Karki M, et al
    . Improved sensitivity on identification and delineation of intracranial hemorrhage lesion using cascaded deep learning models. J Digit Imaging 2019;32:450–61 doi:10.1007/s10278-018-00172-1 pmid:30680471
    CrossRefPubMed
  8. 8.↵
    1. Lee H,
    2. Yune S,
    3. Mansouri M, et al
    . An explainable deep learning algorithm for the detection of acute intracranial hemorrhage from small datasets. Nat Biomed Eng 2019;3:173–82 doi:10.1038/s41551-018-0324-9 pmid:30948806
    CrossRefPubMed
  9. 9.↵
    1. Ye H,
    2. Gao F,
    3. Yin Y, et al
    . Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur Radiol 2019;29:6191–01 doi:10.1007/s00330-019-06163-2 pmid:31041565
    CrossRefPubMed
  10. 10.↵
    1. Chilamkurthy S,
    2. Ghosh R,
    3. Tanamala S, et al
    . Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018;392:2388–96 doi:10.1016/S0140-6736(18)31645-3 pmid:30318264
    CrossRefPubMed
  11. 11.↵
    1. Yu Y,
    2. Xie Y,
    3. Thamm T, et al
    . Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging. JAMA Netw Open 2020;3:e200722 doi:10.1001/jamanetworkopen.2020.0772
    CrossRef
  12. 12.↵
    1. Ho KC,
    2. Scalzo F,
    3. Sarma KV, et al
    . Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images. J Med Imag 2019;6:1 doi:10.1117/1.JMI.6.2.026001
    CrossRef
  13. 13.↵
    1. Heo J,
    2. Yoon JG,
    3. Park H, et al
    . Machine-learning based model for prediction of outcomes in acute stroke. Stroke 2019;50:1263–65 doi:10.1161/STROKEAHA.118.024293 pmid:30890116
    CrossRefPubMed
  14. 14.↵
    1. Nielsen A,
    2. Hansen MB,
    3. Tietze A, et al
    . Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 2018;49:1394–401 doi:10.1161/STROKEAHA.117.019740 pmid:29720437
    Abstract/FREE Full Text
  15. 15.↵
    1. Murray NM,
    2. Unberath M,
    3. Hager GD, et al
    . Artificial intelligence to diagnose ischemic stroke and large vessel occlusions: a systematic review. J Neurointerv Surg 2020;12:156–64 doi:10.1136/neurintsurg-2019-015135 pmid:31594798
    Abstract/FREE Full Text
  16. 16.↵
    1. Alawieh A,
    2. Zaraket F,
    3. Alawieh MB, et al
    . Use of machine learning to optimize selection of elderly patients for endovascular thrombectomy. J Neurointerv Surg 2019;11:847–51 doi:10.1136/neurintsurg-2018-014381 pmid:30712013
    Abstract/FREE Full Text
  17. 17.↵
    1. Sichtermann T,
    2. Faron A,
    3. Sijben R, et al
    . Deep learning-based detection of intracranial aneurysms in 3D TOF-MRA. AJNR Am J Neuroradiol 2019;40:25–32 doi:10.3174/ajnr.A5911 pmid:30573461
    Abstract/FREE Full Text
  18. 18.↵
    1. Park A,
    2. Chute C,
    3. Rajpurkar P, et al
    . Deep learning-assisted diagnosis of intracranial aneurysms using the HeadXNet model. JAMA Netw Open 2019;2:e195600 doi:10.1001/jamanetworkopen.2019.5600 pmid:31173130
    CrossRefPubMed
  19. 19.↵
    1. Stember JN,
    2. Chang P,
    3. Stember DM, et al
    . Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography. J Digit Imaging 2019;32:808–15 doi:10.1007/s10278-018-0162-z pmid:30511281
    CrossRefPubMed
  20. 20.↵
    1. Stone JR,
    2. Wilde EA,
    3. Taylor RA, et al
    . Supervised learning technique for the automated identification of white matter hyperintensities in traumatic brain injury. Brain Inj 2016;30:1458–68 doi:10.1080/02699052.2016.1222080 pmid:27834541
    CrossRefPubMed
  21. 21.↵
    1. Jain S,
    2. Vyvere TV,
    3. Terzopoulos V, et al
    . Automatic quantification of computed tomography features in acute traumatic brain injury. J Neurotrauma 2019;36:1794–1803 doi:10.1089/neu.2018.6183 pmid:30648469
    CrossRefPubMed
  22. 22.↵
    1. Kerley CI,
    2. Huo Y,
    3. Chaganti S, et al
    . Montage based 3D medical image retrieval from traumatic brain injury cohort using deep convolutional neural network. Proc SPIE Int Soc Opt Eng 2019;10949:109492U doi:10.1117/12.2512559 pmid:31762533
    CrossRefPubMed
  23. 23.↵
    1. Li F,
    2. Liu M
    ; Alzheimer's Disease Neuroimaging Initiative. A hybrid convolutional and recurrent neural network for hippocampal analysis in Alzheimer’s disease. J Neurosci Methods 2019;323:108–18 doi:10.1016/j.jneumeth.2019.05.006 pmid:31132373
    CrossRefPubMed
  24. 24.↵
    1. ;
    1. Liu M,
    2. Li F,
    3. Yan H, et al
    ; Alzheimer’s Disease Neuroimaging Initiative. A multi-modal deep convolutional neural network for automatic hippocampal segmentation and classification in Alzheimer’s disease. Neuroimage 2020;208:116459 doi:10.1016/j.neuroimage.2019.116459 pmid:31837471
    CrossRefPubMed
  25. 25.↵
    1. Huff TJ,
    2. Ludwig PE,
    3. Salazar D, et al
    . Fully automated intracranial ventricle segmentation on CT with 2D regional convolutional neural network to estimate ventricular volume. Int J Comput Assist Radiol Surg.2019;14:1923–32 doi:10.1007/s11548-019-02038-5 pmid:31350705
    CrossRefPubMed
  26. 26.↵
    1. Klimont M,
    2. Flieger M,
    3. Rzeszutek J, et al
    . Automated ventricular system segmentation in pediatric patients treated for hydrocephalus using deep learning methods. Biomed Res Int 2019;2019:3059170 doi:10.1155/2019/3059170 pmid:31360710
    CrossRefPubMed
  27. 27.↵
    1. Irie R,
    2. Otsuka Y,
    3. Hagiwara A, et al
    . A novel deep learning approach with 3D convolutional ladder network for differential diagnosis of idiopathic normal pressure hydrocephalus and Alzheimer’s disease. Magn Reson Med Sci 2020 Jan 22 [Epub ahead of print] doi:10.2463/mrms.mp.2019-0106 pmid:1969525
    CrossRefPubMed
  28. 28.↵
    1. Narayana PA,
    2. Coronado I,
    3. Sujit SJ, et al
    . Deep learning for predicting enhancing lesions in multiple sclerosis from noncontrast MRI. Radiology 2020;294:398–404 doi:10.1148/radiol.2019191061 pmid:31845845
    CrossRefPubMed
  29. 29.↵
    1. Zhao Y,
    2. Healy BC,
    3. Rotstein D, et al
    . Exploration of machine learning techniques in prediction of multiple sclerosis disease course. PLoS One 2017;12:e0174866 doi:10.1371/journal.pone.0174866 pmid:28379999
    CrossRefPubMed
  30. 30.↵
    1. Ion-Margineanu A,
    2. Kocevar G,
    3. Stamile C, et al
    . Machine learning approach for classifying mutliple sclerosis courses by combining clinical data with lesion loads and magnetic resonance metabolic features. Front Neurosci 2017;11:398 doi:10.3389/fnins.2017.00398 pmid:8744195
    CrossRefPubMed
  31. 31.↵
    1. Lao J,
    2. Chen Y,
    3. Li ZC, et al
    . A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 2017;7:10353 doi:10.1038/s41598-017-10649-8 pmid:28871110
    CrossRefPubMed
  32. 32.↵
    1. Mobadersany P,
    2. Yousefi S,
    3. Amgad M, et al
    . Predicting cancer outcomes from histology and genetics using convolutional neural networks. Proc Natl Acad Sci USA 2018;115:E2970–79 doi:10.1073/pnas.1717139115 pmid:29531073
    Abstract/FREE Full Text
  33. 33.↵
    1. Charron O,
    2. Lallement A,
    3. Jarnet D, et al
    . Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network. Comput Biol Med 2018;95:43–54 doi:10.1016/j.compbiomed.2018.02.004 pmid:29455079
    CrossRefPubMed
  34. 34.↵
    1. Xue J,
    2. Wang B,
    3. Ming Y, et al
    . Deep-learning-based detection and segmentation-assisted management on brain metastases. Neuro Oncol 2020;22:505–14 doi:10.1093/neuonc/noz234] pmid:31867599
    CrossRefPubMed
  35. 35.↵
    1. Grovik E,
    2. Yi D,
    3. Iv M, et al
    . Deep learning enables automatic detection and segmentation of brain metastases on mulitsequence MRI. J Magn Reson Imaging 2020;51:175–82 doi:10.1002/jmri.26766 pmid:31050074
    CrossRefPubMed
  36. 36.↵
    1. Burns JE,
    2. Yao J,
    3. Summers RM
    . Vertebral body compression fractures and bone density: automated detection and classification on CT images. Radiology 2017;284:788–97 doi:10.1148/radiol.2017162100 pmid:28301777
    CrossRefPubMed
  37. 37.↵
    1. Lessmann N,
    2. van Ginneken B,
    3. de Jong PA, et al
    . Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Med Image Anal 2019;53:142–55 doi:10.1016/j.media.2019.02.005 pmid:30771712
    CrossRefPubMed
  38. 38.↵
    1. Zhao C,
    2. Shao M,
    3. Carass A, et al
    . Applications of a deep learning method for anti-aliasing and super-resolution in MRI. Magn Reson Imaging 2019;64:132–41 doi:10.1016/j.mri.2019.05.038 pmid:31247254
    CrossRefPubMed
  39. 39.↵
    1. Sreekumari A,
    2. Shanbhag D,
    3. Yeo D, et al
    . A deep learning-based approach to reduce rescan and recall rates in clinical MRI examinations. AJNR Am J Neuroradiol 2019;40:217–23 doi:10.3174/ajnr.A5926 pmid:30606726
    Abstract/FREE Full Text
  40. 40.↵
    1. Mardani M,
    2. Gong E,
    3. Cheng JY, et al
    . Deep generative adversarial neural networks for compressed sensing MRI. IEEE Trans Med Imaging 2019;38:167–79 doi:10.1109/TMI.2018.2858752 pmid:30040634
    CrossRefPubMed
  41. 41.↵
    1. Lee D,
    2. Yoo J,
    3. Tak S, et al
    . Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans Biomed Eng 2018;65:1985–95 doi:10.1109/TBME.2018.2821699 pmid:29993390
    CrossRefPubMed
  42. 42.↵
    1. Ouyang J,
    2. Chen KT,
    3. Gong E, et al
    . Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys 2019;46:3555–64 doi:10.1002/mp.13626 pmid:31131901
    CrossRefPubMed
  43. 43.↵
    1. Gong E,
    2. Pauly JM,
    3. Wintermark M, et al
    . Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging 2018;48:330–40 doi:10.1002/jmri.25970 pmid:29437269
    CrossRefPubMed
  44. 44.↵
    1. Dong C,
    2. Loy CC,
    3. He K, et al
    . Image super-resolution using deep convolutional neural networks. IEEE Trans Pattern Anal Mach Intell 2016;38:295–307 doi:10.1109/TPAMI.2015.2439281 pmid:26761735
    CrossRefPubMed
  45. 45.↵
    Subtle Medical Receives FDA 510 (K) Clearance for AI-Powered Subtle MRI. October 15, 2019. https://finance.yahoo.com/news/subtle-medical-receives-fda-510-121200456.html. Accessed April 20, 2020
  46. 46.↵
    ClariPI Gets FDA Clearance for AI-Powered CT Image Denoising Solution. June 24, 2019. http://www.itnonline.com/claripi-gets-fda-clearance-for-ai-powered-ct-image-denoising-solution. Accessed April 27, 2020
  47. 47.↵
    1. Chang P,
    2. Grinband J,
    3. Weinberg BD, et al
    . Deep-learning convolutional neural networks accurately classify genetic mutations in glioma. AJNR Am J Neuroradiol 2018;39:1201–17 doi:10.3174/ajnr.A5667 pmid:29748206
    Abstract/FREE Full Text
  48. 48.↵
    1. Young JD,
    2. Cai C,
    3. Lu X
    . Unsupervised deep learning reveals subtypes of glioblastoma. BMC Bioinformatics 2017;18:381 doi:10.1186/s12859-017-1798-2 pmid:28984190
    CrossRefPubMed
  49. 49.↵
    1. Chang K,
    2. Bai HX,
    3. Zhou H, et al
    . Residual convolutional neural network for the determination of IDH status in low-and high-grade gliomas from MR imaging. Clin Cancer Res 2018;24:1073–81 doi:10.1158/1078-0432.CCR-17-2236 pmid:29167275
    Abstract/FREE Full Text
  50. 50.↵
    1. Fujima N,
    2. Andreu-Arasa VC,
    3. Meibom SK, et al
    . Prediction of the human papillomavirus status in patients with oropharyngeal squamous cell carcinoma by FDG-PET imaging dataset using deep learning analysis: a hypothesis-generating study. Eur J Radiol 2020;126:108936 doi:10.1016/j.ejrad.2020.108936 pmid:32171912
    CrossRefPubMed
  51. 51.↵
    1. Han W,
    2. Qin L,
    3. Bay C, et al
    . Deep transfer learning and radiomics feature prediction of survival of patients with high-grade gliomas. AJNR Am J Neuroradiol 2020;41:40–48 doi:10.3174/ajnr.A6365 pmid:31857325
    Abstract/FREE Full Text
  52. 52.↵
    1. Sun L,
    2. Zhang S,
    3. Chen H, et al
    . Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning. Front Neurosci 2019;13:810 doi:10.3389/fnins.2019.00810 pmid:31474816
    CrossRefPubMed
  53. 53.↵
    1. Li H,
    2. Habes M,
    3. Wolk DA,
    4. Fan Y
    ; Alzheimer’s Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle Study of Aging. A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimers Dement 2019;15:1059–70 doi:10.1016/j.jalz.2019.02.007 pmid:31201098
    CrossRefPubMed
  54. 54.↵
    1. Basaia S,
    2. Agosta F,
    3. Wagner L, et al
    ; Alzheimer's Disease Neuroimaging Initiative. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. Neuroimage Clin 2019;21:101645 doi:10.1016/j.nicl.2018.101645 pmid:30584016
    CrossRefPubMed
  55. 55.↵
    1. Combs TS,
    2. Sandt LS,
    3. Clamann MP, et al
    . Automated vehicles and pedestrian safety: exploring the promise and limits of pedestrian safety. Am J Prev Med 2019;56:1–7 doi:10.1016/j.amepre.2018.06.024 pmid:30337236
    CrossRefPubMed
  56. 56.↵
    1. Holodny AI
    . “Am I about to lose my job?!”: A comment on “computer-extracted texture features to distinguish cerebral radiation necrosis from recurrent brain tumors on multiparametric MRI—a feasibility study.” AJNR Am J Neuroradiol 2016;37:2237–38 doi:10.3174/ajnr.A5002 pmid:27737854
    FREE Full Text
  57. 57.↵
    1. Thrall MJ
    . Automated screening of Papanicolaou tests: a review of the literature. Diagn Cytopathol 2019;47:20–27 doi:10.1002/dc.23931 pmid:29603675
    CrossRefPubMed
  58. 58.↵
    1. Kitchener HC,
    2. Blanks R,
    3. Cubie H, et al
    ; MAVARIC Trial Study Group. MAVARIC: a comparison of automation-assisted and manual cervical screening—a randomised controlled trial. Health Technol Assess 2011;15:1–70 doi:10.3310/hta15030 pmid:21266159
    CrossRefPubMed
  59. 59.↵
    1. Schläpfer J,
    2. Wellens HJ
    . Computer-interpreted electrocardiograms: benefits and limitations. J Am Coll Cardiol 2017;70:1183–92 doi:10.1016/j.jacc.2017.07.723 pmid:28838369
    FREE Full Text
  60. 60.↵
    1. Lindow T,
    2. Kron J,
    3. Thulesius H, et al
    . Erroneous computer-based interpretations of atrial fibrillation and atrial flutter in a Swedish primary health care setting. Scand J Prim Health Care 2019;37:426–33 doi:10.1080/02813432.2019.1684429 pmid:31684791
    CrossRefPubMed
  61. 61.↵
    1. Thrall JH,
    2. Li X,
    3. Li Q, et al
    . Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 2018;15:504–08 doi:10.1016/j.jacr.2017.12.026 pmid:29402533
    CrossRefPubMed
  62. 62.↵
    1. Pakdemirli E
    . Artificial intelligence in radiology: friend or foe? Where are we now and where are we heading? Acta Radiol Open 2019;8:2058460119830222 doi:10.1177/2058460119830222 pmid:30815280
    CrossRefPubMed
  63. 63.↵
    1. Duong MT,
    2. Rauschecker AM,
    3. Rudie JD, et al
    . Artificial intelligence for precision education in radiology. Br J Radiol 2019;92:20190389 doi:10.1259/bjr.20190389 pmid:31322909
    CrossRefPubMed
  64. 64.↵
    1. Flanders AE,
    2. Prevedello LM,
    3. Shih G, et al
    . Construction of a machine learning dataset through collaboration: the RSNA 2019 Brain CT Hemorrhage Challenge. Radiology: Artificial Intelligence 2020;2:e190211 doi:10.1148/ryai.2020190211
    CrossRef
  65. 65.↵
    1. Yune S,
    2. Lee H,
    3. Pomerantz SR, et al
    . Real-world performance of deep-learning-based automated detection system for intracranial hemorrhage. In: Proceedings of the 2018 Society for Imaging Informatics in Imaging 2018 Conference on Machine Intelligence in Medical Imaging, San Francisco, California; September 9–10, 2018
  66. 66.↵
    1. Guo J,
    2. Gong E,
    3. Fan AP, et al
    . Predicting 15O-water PET cerebral blood flow maps from multi-contrast MRI using a deep convolutional neural network with evaluation of training cohort bias. J Cereb Blood Flow Metab 2019 Nov 13. [Epub ahead of print] doi:10.1177/0271678X19888123 pmid:31722599
    CrossRefPubMed
  67. 67.↵
    1. Chen IY,
    2. Joshi S,
    3. Ghassemi M
    . Treating health disparities with artificial intelligence. Nat Med 2020;26:16–17 doi:10.1038/s41591-019-0649-2 pmid:31932779
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (8)
American Journal of Neuroradiology
Vol. 41, Issue 8
1 Aug 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Artificial Intelligence in Neuroradiology: Current Status and Future Directions
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Y.W. Lui, P.D. Chang, G. Zaharchuk, D.P. Barboriak, A.E. Flanders, M. Wintermark, C.P. Hess, C.G. Filippi
Artificial Intelligence in Neuroradiology: Current Status and Future Directions
American Journal of Neuroradiology Aug 2020, 41 (8) E52-E59; DOI: 10.3174/ajnr.A6681

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Artificial Intelligence in Neuroradiology: Current Status and Future Directions
Y.W. Lui, P.D. Chang, G. Zaharchuk, D.P. Barboriak, A.E. Flanders, M. Wintermark, C.P. Hess, C.G. Filippi
American Journal of Neuroradiology Aug 2020, 41 (8) E52-E59; DOI: 10.3174/ajnr.A6681
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATION:
    • CONCLUSIONS
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Assessing the Performance of Artificial Intelligence Models: Insights from the American Society of Functional Neuroradiology Artificial Intelligence Competition
  • Assessing the Emergence and Evolution of Artificial Intelligence and Machine Learning Research in Neuroradiology
  • Critical Appraisal of Artificial Intelligence-Enabled Imaging Tools Using the Levels of Evidence System
  • Critical Appraisal of Artificial Intelligence-Enabled Imaging Tools Using the Levels of Evidence System
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • AI-Enabled Imaging Tools: Critical Appraisal
  • Amyloid Imaging Abnormalities in Alzheimer’s
  • The Updated Neuroradiology Milestones: Synapsing from 1.0 to 2.0
Show more White Paper

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire