Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Research ArticleBRAIN TUMOR IMAGING

Pseudo-Resting-State Functional MRI Derived from Dynamic Susceptibility Contrast Perfusion MRI Can Predict Cognitive Impairment in Glioma

Nicholas S. Cho, Chencai Wang, Kathleen Van Dyk, Francesco Sanvito, Sonoko Oshima, Jingwen Yao, Albert Lai, Noriko Salamon, Timothy F. Cloughesy, Phioanh L. Nghiemphu and Benjamin M. Ellingson
American Journal of Neuroradiology June 2024, DOI: https://doi.org/10.3174/ajnr.A8327
Nicholas S. Cho
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
cDepartment of Bioengineering (N.S.C., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
dMedical Scientist Training Program (N.S.C.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nicholas S. Cho
Chencai Wang
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kathleen Van Dyk
eDepartment of Psychiatry and Biobehavioral Sciences (K.V.D, B.M.E.), David Geffen School of Medicine, Semel Institute, University of California Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francesco Sanvito
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Francesco Sanvito
Sonoko Oshima
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jingwen Yao
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
bDepartment of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jingwen Yao
Albert Lai
fUCLA Neuro-Oncology Program (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
gDepartment of Neurology (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Albert Lai
Noriko Salamon
bDepartment of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Noriko Salamon
Timothy F. Cloughesy
fUCLA Neuro-Oncology Program (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
gDepartment of Neurology (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Timothy F. Cloughesy
Phioanh L. Nghiemphu
fUCLA Neuro-Oncology Program (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
gDepartment of Neurology (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Phioanh L. Nghiemphu
Benjamin M. Ellingson
aFrom the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
cDepartment of Bioengineering (N.S.C., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
eDepartment of Psychiatry and Biobehavioral Sciences (K.V.D, B.M.E.), David Geffen School of Medicine, Semel Institute, University of California Los Angeles, Los Angeles, California
hDepartment of Neurosurgery (B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Benjamin M. Ellingson
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Biswal B,
    2. Yetkin FZ,
    3. Haughton VM, et al
    . Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537–41 pmid:8524021
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Pasquini L,
    2. Peck KK,
    3. Jenabi M, et al
    . Functional MRI in neuro-oncology: state of the art and future directions. Radiology 2023;308:e222028 doi:10.1148/radiol.222028 pmid:37668519
    CrossRefPubMed
  3. 3.↵
    1. Gohel S,
    2. Laino ME,
    3. Rajeev-Kumar G, et al
    . Resting-state functional connectivity of the middle frontal gyrus can predict language lateralization in patients with brain tumors. AJNR Am J Neuroradiol 2019;40:319–25 doi:10.3174/ajnr.A5932 pmid:30630835
    Abstract/FREE Full Text
  4. 4.↵
    1. Kumar VA,
    2. Heiba IM,
    3. Prabhu SS, et al
    . The role of resting-state functional MRI for clinical preoperative language mapping. Cancer Imaging 2020;20:47 doi:10.1186/s40644-020-00327-w pmid:32653026
    CrossRefPubMed
  5. 5.↵
    1. Leuthardt EC,
    2. Guzman G,
    3. Bandt SK, et al
    . Integration of resting state functional MRI into clinical practice: a large single institution experience. PLoS One 2018;13:e0198349 doi:10.1371/journal.pone.0198349 pmid:29933375
    CrossRefPubMed
  6. 6.↵
    1. Sair HI,
    2. Yahyavi-Firouz-Abadi N,
    3. Calhoun VD, et al
    . Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: comparison with task fMRI. Hum Brain Mapp 2016;37:913–23 doi:10.1002/hbm.23075 pmid:26663615
    CrossRefPubMed
  7. 7.↵
    1. Tie Y,
    2. Rigolo L,
    3. Norton IH, et al
    . Defining language networks from resting-state fMRI for surgical planning: a feasibility study. Hum Brain Mapp 2014;35:1018–30 doi:10.1002/hbm.22231 pmid:23288627
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Greicius MD,
    2. Krasnow B,
    3. Reiss AL, et al
    . Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003;100:253–58 doi:10.1073/pnas.0135058100 pmid:12506194
    Abstract/FREE Full Text
  9. 9.↵
    1. Greicius MD,
    2. Supekar K,
    3. Menon V, et al
    . Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009;19:72–78 doi:10.1093/cercor/bhn059 pmid:18403396
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Huang Q,
    2. Zhang R,
    3. Hu X, et al
    . Disturbed small-world networks and neurocognitive function in frontal lobe low-grade glioma patients. PLoS One 2014;9:e94095 doi:10.1371/journal.pone.0094095 pmid:24714669
    CrossRefPubMed
  11. 11.↵
    1. Kocher M,
    2. Jockwitz C,
    3. Caspers S, et al
    . Role of the default mode resting-state network for cognitive functioning in malignant glioma patients following multimodal treatment. Neuroimage Clin 2020;27:102287 doi:10.1016/j.nicl.2020.102287 pmid:32540630
    CrossRefPubMed
  12. 12.↵
    1. Noll KR,
    2. Chen HS,
    3. Wefel JS, et al
    . Alterations in functional connectomics associated with neurocognitive changes following glioma resection. Neurosurgery 2021;88:544–51 doi:10.1093/neuros/nyaa453 pmid:33080024
    CrossRefPubMed
  13. 13.↵
    1. Seitzman BA,
    2. Anandarajah H,
    3. Dworetsky A, et al
    . Cognitive deficits and altered functional brain network organization in pediatric brain tumor patients. Brain Imaging Behav 2023;17:689–701 doi:10.1007/s11682-023-00798-y pmid:37695507
    CrossRefPubMed
  14. 14.↵
    1. Wang C,
    2. Van Dyk K,
    3. Cho N, et al
    . Characterization of cognitive function in survivors of diffuse gliomas using resting-state functional MRI (rs-fMRI). Brain Imaging Behav 2022;16:239–51 doi:10.1007/s11682-021-00497-6 pmid:34350525
    CrossRefPubMed
  15. 15.↵
    1. Nayak L,
    2. DeAngelis LM,
    3. Brandes AA, et al
    . The Neurologic Assessment in Neuro-Oncology (NANO) scale: a tool to assess neurologic function for integration into the Response Assessment in Neuro-Oncology (RANO) criteria. Neuro Oncol 2017;19:625–35 doi:10.1093/neuonc/nox029 pmid:28453751
    CrossRefPubMed
  16. 16.↵
    1. Correa DD
    . Neurocognitive function in brain tumors. Curr Neurol Neurosci Rep 2010;10:232–39 doi:10.1007/s11910-010-0108-4 pmid:20425039
    CrossRefPubMed
  17. 17.↵
    1. Kickingereder P,
    2. Sahm F,
    3. Radbruch A, et al
    . IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep 2015;5:16238 doi:10.1038/srep16238 pmid:26538165
    CrossRefPubMed
  18. 18.↵
    1. Leu K,
    2. Ott GA,
    3. Lai A, et al
    . Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II–III diffuse gliomas. J Neurooncol 2017;134:177–88 doi:10.1007/s11060-017-2506-9 pmid:28547590
    CrossRefPubMed
  19. 19.↵
    1. Fatterpekar GM,
    2. Galheigo D,
    3. Narayana A, et al
    . Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum—use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol 2012;198:19–26 doi:10.2214/AJR.11.7417 pmid:22194475
    CrossRefPubMed
  20. 20.↵
    1. Kim YH,
    2. Oh SW,
    3. Lim YJ, et al
    . Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 2010;112:758–65 doi:10.1016/j.clineuro.2010.06.005 pmid:20619531
    CrossRefPubMed
  21. 21.↵
    1. Kumar VA,
    2. Lee J,
    3. Liu HL, et al
    . Recommended resting-state fMRI acquisition and preprocessing steps for preoperative mapping of language and motor and visual areas in adult and pediatric patients with brain tumors and epilepsy. AJNR Am J Neuroradiol 2024;45:139–48 doi:10.3174/ajnr.A8067 pmid:38164572
    Abstract/FREE Full Text
  22. 22.↵
    1. Wefel JS,
    2. Vardy J,
    3. Ahles T, et al
    . International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol 2011;12:703–08 doi:10.1016/S1470-2045(10)70294-1 pmid:21354373
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Reijneveld JC,
    2. Sitskoorn MM,
    3. Klein M, et al
    . Cognitive status and quality of life in patients with suspected versus proven low-grade gliomas. Neurology 2001;56:618–23 doi:10.1212/wnl.56.5.618 pmid:11245713
    CrossRefPubMed
  24. 24.↵
    1. Ingraham LJ,
    2. Aiken CB
    . An empirical approach to determining criteria for abnormality in test batteries with multiple measures. Neuropsychology 1996;10:120–24 doi:10.1037/0894-4105.10.1.120
    CrossRefWeb of Science
  25. 25.↵
    1. Ellingson BM,
    2. Bendszus M,
    3. Boxerman J, et al
    ; Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol 2015;17:1188–98 doi:10.1093/neuonc/nov095 pmid:26250565
    CrossRefPubMed
  26. 26.↵
    1. Whitfield-Gabrieli S,
    2. Nieto-Castanon A
    . Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2012;2:125–41 doi:10.1089/brain.2012.0073 pmid:22642651
    CrossRefPubMed
  27. 27.↵
    1. Jenkinson M,
    2. Beckmann CF,
    3. Behrens TEJ, et al
    . FSL. Neuroimage 2012;62:782–90 doi:10.1016/j.neuroimage.2011.09.015 pmid:21979382
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Otten ML,
    2. Mikell CB,
    3. Youngerman BE, et al
    . Motor deficits correlate with resting state motor network connectivity in patients with brain tumours. Brain 2012;135:1017–26 doi:10.1093/brain/aws041 pmid:22408270
    CrossRefPubMed
  29. 29.↵
    1. Leu K,
    2. Boxerman JL,
    3. Cloughesy TF, et al
    . Improved leakage correction for single-echo dynamic susceptibility contrast perfusion MRI estimates of relative cerebral blood volume in high-grade gliomas by accounting for bidirectional contrast agent exchange. AJNR Am J Neuroradiol 2016;37:1440–46 doi:10.3174/ajnr.A4759 pmid:27079371
    Abstract/FREE Full Text
  30. 30.↵
    1. Leu K,
    2. Boxerman JL,
    3. Lai A, et al
    . Bidirectional contrast agent leakage correction of dynamic susceptibility contrast (DSC)-MRI improves cerebral blood volume estimation and survival prediction in recurrent glioblastoma treated with bevacizumab. J Magn Reson Imaging 2016;44:1229–37 doi:10.1002/jmri.25227 pmid:26971534
    CrossRefPubMed
  31. 31.↵
    1. Cox RW
    . AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996;29:162–73 doi:10.1006/cbmr.1996.0014 pmid:8812068
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Hanley JA,
    2. McNeil BJ
    . A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983;148:839–43 doi:10.1148/radiology.148.3.6878708 pmid:6878708
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Rudie JD,
    2. Brown JA,
    3. Beck-Pancer D, et al
    . Altered functional and structural brain network organization in autism. Neuroimage Clin 2012;2:79–94 doi:10.1016/j.nicl.2012.11.006 pmid:24179761
    CrossRefPubMed
  34. 34.↵
    1. Tomasi D,
    2. Volkow ND
    . Aging and functional brain networks. Mol Psychiatry 2012;17:549–58 doi:10.1038/mp.2011.81 pmid:21727896
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Wang K,
    2. Liang M,
    3. Wang L, et al
    . Altered functional connectivity in early Alzheimer's disease: A resting-state fMRI study. Hum Brain Mapp 2007;28:967–78 doi:10.1002/hbm.20324 pmid:17133390
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Park CH,
    2. Chang WH,
    3. Ohn SH, et al
    . Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 2011;42:1357–62 doi:10.1161/STROKEAHA.110.596155 pmid:21441147
    Abstract/FREE Full Text
  37. 37.↵
    1. Daniel AGS,
    2. Park KY,
    3. Roland JL, et al
    . Functional connectivity within glioblastoma impacts overall survival. Neuro Oncol 2021;23:412–21 doi:10.1093/neuonc/noaa189 pmid:32789494
    CrossRefPubMed
  38. 38.↵
    1. Petridis PD,
    2. Horenstein CI,
    3. Pereira B, et al
    . BOLD asynchrony elucidates tumor burden in IDH-mutated gliomas. Neuro Oncol 2022;24:78–87 doi:10.1093/neuonc/noab154 pmid:34214170
    CrossRefPubMed
  39. 39.↵
    1. Boxerman JL,
    2. Quarles CC,
    3. Hu LS, et al
    ; Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee. Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol 2020;22:1262–75 doi:10.1093/neuonc/noaa141 pmid:32516388
    CrossRefPubMed
  40. 40.↵
    1. Van Dijk KR,
    2. Hedden T,
    3. Venkataraman A, et al
    . Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2010;103:297–321 doi:10.1152/jn.00783.2009 pmid:19889849
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Ellingson BM,
    2. Bendszus M,
    3. Boxerman J, et al
    ; Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol 2015;17:1188–98 doi:10.1093/neuonc/nov095 pmid:26250565
    CrossRefPubMed
  42. 42.↵
    1. Chakhoyan A,
    2. Leu K,
    3. Pope WB, et al
    . Improved spatiotemporal resolution of dynamic susceptibility contrast perfusion MRI in brain tumors using simultaneous multi-slice echo-planar imaging. AJNR Am J Neuroradiol 2018;39:43–45 doi:10.3174/ajnr.A5433 pmid:29074632
    Abstract/FREE Full Text
  43. 43.↵
    1. Bathla G,
    2. Gene MN,
    3. Peck KK, et al
    . Resting state functional connectivity of the supplementary motor area to motor and language networks in patients with brain tumors. J Neuroimaging 2019;29:521–26 doi:10.1111/jon.12624 pmid:31034698
    CrossRefPubMed
  44. 44.↵
    1. Cho NS,
    2. Peck KK,
    3. Gene MN, et al
    . Resting-state functional MRI language network connectivity differences in patients with brain tumors: exploration of the cerebellum and contralesional hemisphere. Brain Imaging Behav 2022;16:252–62 doi:10.1007/s11682-021-00498-5 pmid:34333725
    CrossRefPubMed
  45. 45.↵
    1. Stokes AM,
    2. Bergamino M,
    3. Alhilali L, et al
    . Evaluation of single bolus, dual-echo dynamic susceptibility contrast MRI protocols in brain tumor patients. J Cereb Blood Flow Metab 2021;41:3378–90 doi:10.1177/0271678X211039597 pmid:34415211
    CrossRefPubMed
  46. 46.↵
    1. Tordjman M,
    2. Madelin G,
    3. Gupta PK, et al
    . Functional connectivity of the default mode, dorsal attention and fronto-parietal executive control networks in glial tumor patients. J Neurooncol 2021;152:347–55.doi:10.1007/s11060-021-03706-w pmid:33528739
    CrossRefPubMed
  47. 47.↵
    1. Gardini S,
    2. Venneri A,
    3. Sambataro F, et al
    . Increased functional connectivity in the default mode network in mild cognitive impairment: a maladaptive compensatory mechanism associated with poor semantic memory performance. J Alzheimers Dis 2015;45:457–70 doi:10.3233/JAD-142547 pmid:25547636
    CrossRefPubMed
  48. 48.↵
    1. Zhu S,
    2. Fang Z,
    3. Hu S, et al
    . Resting-state brain function analysis using concurrent BOLD in ASL perfusion fMRI. PL0S One 2013;8:e65884 doi:10.1371/journal.pone.0065884 pmid:23750275
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Pseudo-Resting-State Functional MRI Derived from Dynamic Susceptibility Contrast Perfusion MRI Can Predict Cognitive Impairment in Glioma
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Nicholas S. Cho, Chencai Wang, Kathleen Van Dyk, Francesco Sanvito, Sonoko Oshima, Jingwen Yao, Albert Lai, Noriko Salamon, Timothy F. Cloughesy, Phioanh L. Nghiemphu, Benjamin M. Ellingson
Pseudo-Resting-State Functional MRI Derived from Dynamic Susceptibility Contrast Perfusion MRI Can Predict Cognitive Impairment in Glioma
American Journal of Neuroradiology Jun 2024, DOI: 10.3174/ajnr.A8327

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Pseudo-Resting-State Functional MRI Derived from Dynamic Susceptibility Contrast Perfusion MRI Can Predict Cognitive Impairment in Glioma
Nicholas S. Cho, Chencai Wang, Kathleen Van Dyk, Francesco Sanvito, Sonoko Oshima, Jingwen Yao, Albert Lai, Noriko Salamon, Timothy F. Cloughesy, Phioanh L. Nghiemphu, Benjamin M. Ellingson
American Journal of Neuroradiology Jun 2024, DOI: 10.3174/ajnr.A8327
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Temporal Evolution of Vestibular schwannoma
  • CE MRI for Brain Metastasis Detection
  • Mesenchymal Non-Meningothelial Tumors of the CNS
Show more BRAIN TUMOR IMAGING

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire