Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Research ArticleNEURODEGENERATIVE DISORDER IMAGING

Automated Quantification of Cerebral Microbleeds in SWI: Association with Vascular Risk Factors, White Matter Hyperintensity Burden, and Cognitive Function

Ji Su Ko, Yangsean Choi, Eun Seon Jeong, Hyun-Jung Kim, Grace Yoojin Lee, Ji Eun Park, Namkug Kim and Ho Sung Kim
American Journal of Neuroradiology March 2025, DOI: https://doi.org/10.3174/ajnr.A8552
Ji Su Ko
aFrom the Department of Radiology and Research Institute of Radiology (J.S.K., Y.C., E.S.J., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Centre, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ji Su Ko
Yangsean Choi
aFrom the Department of Radiology and Research Institute of Radiology (J.S.K., Y.C., E.S.J., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Centre, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yangsean Choi
Eun Seon Jeong
aFrom the Department of Radiology and Research Institute of Radiology (J.S.K., Y.C., E.S.J., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Centre, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hyun-Jung Kim
bDepartment of Convergence Medicine (H.-J.K., G.Y.L., N.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grace Yoojin Lee
bDepartment of Convergence Medicine (H.-J.K., G.Y.L., N.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Grace Yoojin Lee
Ji Eun Park
aFrom the Department of Radiology and Research Institute of Radiology (J.S.K., Y.C., E.S.J., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Centre, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ji Eun Park
Namkug Kim
bDepartment of Convergence Medicine (H.-J.K., G.Y.L., N.K.), University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Namkug Kim
Ho Sung Kim
aFrom the Department of Radiology and Research Institute of Radiology (J.S.K., Y.C., E.S.J., J.E.P., H.S.K.), University of Ulsan College of Medicine, Asan Medical Centre, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ho Sung Kim
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Haller S,
    2. Vernooij MW,
    3. Kuijer JPA, et al
    . Cerebral microbleeds: imaging and clinical significance. Radiology 2018;287:11–28 doi:10.1148/radiol.2018170803 pmid:29558307
    CrossRefPubMed
  2. 2.↵
    1. Fazekas F,
    2. Kleinert R,
    3. Roob G, et al
    . Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–42 pmid:10319975
    Abstract/FREE Full Text
  3. 3.↵
    1. Shams S,
    2. Martola J,
    3. Cavallin L, et al
    . SWI or T2*: which MRI sequence to use in the detection of cerebral microbleeds? The Karolinska Imaging Dementia Study. AJNR Am J Neuroradiol 2015;36:1089–95 doi:10.3174/ajnr.A4248 pmid:25698623
    Abstract/FREE Full Text
  4. 4.↵
    1. Sharrief A
    . Diagnosis and management of cerebral small vessel disease. Continuum (Minneap Minn) 2023;29:501–18 doi:10.1212/CON.0000000000001232 pmid:37039407
    CrossRefPubMed
  5. 5.↵
    1. Balestrieri A,
    2. Lucatelli P,
    3. Suri HS, et al
    . Volume of white matter hyperintensities, and cerebral micro-bleeds. J Stroke Cerebrovasc Dis 2021;30:105905 doi:10.1016/j.jstrokecerebrovasdis.2021.105905 pmid:34107418
    CrossRefPubMed
  6. 6.↵
    1. Zhao Y,
    2. Zhou Y,
    3. Zhou H, et al
    . Low-density lipoprotein cholesterol, statin therapy, and cerebral microbleeds: the CIRCLE study. Neuroimage Clin 2023;39:103502 doi:10.1016/j.nicl.2023.103502 pmid:37643520
    CrossRefPubMed
  7. 7.↵
    1. Mitaki S,
    2. Nagai A,
    3. Oguro H, et al
    . Serum lipid fractions and cerebral microbleeds in a healthy Japanese population. Cerebrovasc Dis 2017;43:186–91 doi:10.1159/000456623 pmid:28208146
    CrossRefPubMed
  8. 8.↵
    1. Konishi M,
    2. Iso H,
    3. Komachi Y, et al
    . Associations of serum total cholesterol, different types of stroke, and stenosis distribution of cerebral arteries: the Akita Pathology Study. Stroke 1993;24:954–64 doi:10.1161/01.str.24.7.954 pmid:8322395
    Abstract/FREE Full Text
  9. 9.↵
    1. Gottesman RF,
    2. Schneider AL,
    3. Zhou Y, et al
    . Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA 2017;317:1443–50 doi:10.1001/jama.2017.3090 pmid:28399252
    CrossRefPubMed
  10. 10.↵
    1. Poels MM,
    2. Ikram MA,
    3. van der Lugt A, et al
    . Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology 2012;78:326–33 doi:10.1212/WNL.0b013e3182452928 pmid:22262748
    CrossRefPubMed
  11. 11.↵
    1. Poels MM,
    2. Vernooij MW,
    3. Ikram MA, et al
    . Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam Scan Study. Stroke 2010;41:S103–06 doi:10.1161/STROKEAHA.110.595181 pmid:20876479
    Abstract/FREE Full Text
  12. 12.↵
    1. Liu S,
    2. Utriainen D,
    3. Chai C, et al
    . Cerebral microbleed detection using susceptibility weighted imaging and deep learning. Neuroimage 2019;198:271–82 doi:10.1016/j.neuroimage.2019.05.046 pmid:31121296
    CrossRefPubMed
  13. 13.↵
    1. Cordonnier C,
    2. Potter GM,
    3. Jackson CA, et al
    . Improving interrater agreement about brain microbleeds. Stroke 2009;40:94–99 doi:10.1161/STROKEAHA.108.526996 pmid:19008468
    Abstract/FREE Full Text
  14. 14.↵
    1. Wang R,
    2. Lei T,
    3. Cui R, et al
    . Medical image segmentation using deep learning: a survey. IET Image Processing 2022;16:1243–67 doi:10.1049/ipr2.12419
    CrossRef
  15. 15.↵
    1. Isensee F,
    2. Jaeger PF,
    3. Kohl SA, et al
    . nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 2021;18:203–11 doi:10.1038/s41592-020-01008-z pmid:33288961
    CrossRefPubMed
  16. 16.↵
    1. Eijgelaar RS,
    2. Visser M,
    3. Müller DM, et al
    . Robust deep learning–based segmentation of glioblastoma on routine clinical MRI scans using sparsified training. Radiol Artif Intell 2020;2:e190103 doi:10.1148/ryai.2020190103 pmid:33937837
    CrossRefPubMed
  17. 17.↵
    1. Mansour RF,
    2. Aljehane NO
    . An optimal segmentation with deep learning-based inception network model for intracranial hemorrhage diagnosis. Neural Comput Appl 2021;33:13831–43 doi:10.1007/s00521-021-06020-8
    CrossRef
  18. 18.↵
    1. Koschmieder K,
    2. Paul MM,
    3. van den Heuvel TL, et al
    . Automated detection of cerebral microbleeds via segmentation in susceptibility-weighted images of patients with traumatic brain injury. Neuroimage Clin 2022;35:10302 doi:10.1016/j.nicl.2022.103027 pmid:35597029
    CrossRefPubMed
  19. 19.↵
    1. Li X,
    2. Morgan PS,
    3. Ashburner J, et al
    . The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J Neurosci Methods 2016;264:47–56 doi:10.1016/j.jneumeth.2016.03.001 pmid:26945974
    CrossRefPubMed
  20. 20.↵
    1. Isensee F,
    2. Schell M,
    3. Pflueger I, et al
    . Automated brain extraction of multisequence MRI using artificial neural networks. Hum Brain Mapp 2019;40:4952–64 doi:10.1002/hbm.24750 pmid:31403237
    CrossRefPubMed
  21. 21.↵
    1. Tustison NJ,
    2. Avants BB,
    3. Cook PA, et al
    . N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010;29:1310–20 doi:10.1109/TMI.2010.2046908 pmid:20378467
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Billot B,
    2. Greve DN,
    3. Puonti O, et al
    ; ADNI, SynthSeg: segmentation of brain MRI scans of any contrast and resolution without retraining. Med Image Anal 2023;86:102789 doi:10.1016/j.media.2023.102789 pmid:36857946
    CrossRefPubMed
  23. 23.↵
    1. Thada V,
    2. Jaglan V
    . Comparison of jaccard, dice, cosine similarity coefficient to find best fitness value for web retrieved documents using genetic algorithm. International Journal of Innovations in Engineering and Technology 2013;2(4):202–205
  24. 24.↵
    1. Fan P,
    2. Shan W,
    3. Yang H, et al
    . Cerebral microbleed automatic detection system based on the “deep learning.” Front Med (Lausanne) 2022;9:807443 doi:10.3389/fmed.2022.807443 pmid:35402427
    CrossRefPubMed
  25. 25.↵
    1. Al-Masni MA,
    2. Kim W-R,
    3. Kim EY, et al
    . Automated detection of cerebral microbleeds in MR images: a two-stage deep learning approach. Neuroimage Clin 2020;28:102464 doi:10.1016/j.nicl.2020.102464 pmid:33395960
    CrossRefPubMed
  26. 26.↵
    1. Romero JR,
    2. Preis SR,
    3. Beiser A, et al
    . Risk factors, stroke prevention treatments, and prevalence of cerebral microbleeds in the Framingham Heart Study. Stroke 2014;45:1492–94 doi:10.1161/STROKEAHA.114.004130 pmid:24713533
    Abstract/FREE Full Text
  27. 27.↵
    1. Gao Z,
    2. Wang W,
    3. Wang Z, et al
    . Cerebral microbleeds are associated with deep white matter hyperintensities, but only in hypertensive patients. PLoS One 2014;9:e91637 doi:10.1371/journal.pone.0091637 pmid:24626222
    CrossRefPubMed
  28. 28.↵
    1. Zhao X,
    2. Yin L,
    3. Yu L, et al
    . Correlation study and clinical value analysis between cerebral microbleeds and white matter hyperintensity with high-field susceptibility-weighted imaging. Medicine (Baltimore) 2023;102:e35003 doi:10.1097/MD.0000000000035003 pmid:37682129
    CrossRefPubMed
  29. 29.↵
    1. Graff-Radford J,
    2. Arenaza-Urquijo EM,
    3. Knopman DS, et al
    . White matter hyperintensities: relationship to amyloid and tau burden. Brain 2019;142:2483–91 doi:10.1093/brain/awz162 pmid:31199475
    CrossRefPubMed
  30. 30.↵
    1. Lee S,
    2. Zimmerman ME,
    3. Narkhede A, et al
    ; Dominantly Inherited Alzheimer Network. White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer’s disease. PLoS One 2018;13:e0195838 doi:10.1371/journal.pone.0195838 pmid:29742105
    CrossRefPubMed
  31. 31.↵
    1. Holland CM,
    2. Smith EE,
    3. Csapo I, et al
    . Spatial distribution of white-matter hyperintensities in Alzheimer disease, cerebral amyloid angiopathy, and healthy aging. Stroke 2008;39:1127–33 doi:10.1161/STROKEAHA.107.497438 pmid:18292383
    Abstract/FREE Full Text
  32. 32.↵
    1. Zamboni G,
    2. Griffanti L,
    3. Jenkinson M, et al
    ; Oxford Vascular Study. White matter imaging correlates of early cognitive impairment detected by the Montreal Cognitive Assessment after transient ischemic attack and minor stroke. Stroke 2017;48:1539–47 doi:10.1161/STROKEAHA.116.016044 pmid:28487328
    Abstract/FREE Full Text
  33. 33.↵
    1. Greenberg SM,
    2. Eng JA,
    3. Ning M, et al
    . Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke 2004;35:1415–20 doi:10.1161/01.STR.0000126807.69758.0e pmid:15073385
    Abstract/FREE Full Text
  34. 34.↵
    1. Werring DJ,
    2. Gregoire SM,
    3. Cipolotti L
    . Cerebral microbleeds and vascular cognitive impairment. J Neurol Sci 2010;299:131–35 doi:10.1016/j.jns.2010.08.034 pmid:20850134
    CrossRefPubMed
  35. 35.↵
    1. Nakamori M,
    2. Hosomi N,
    3. Tachiyama K, et al
    . Lobar microbleeds are associated with cognitive impairment in patients with lacunar infarction. Sci Rep 2020;10:16410 doi:10.1038/s41598-020-73404-6 pmid:33009480
    CrossRefPubMed
  36. 36.↵
    1. Yu AC,
    2. Mohajer B,
    3. Eng J
    . External validation of deep learning algorithms for radiologic diagnosis: a systematic review. Radiol Artif Intell 2022;4:e210064 doi:10.1148/ryai.210064 pmid:35652114
    CrossRefPubMed
  37. 37.↵
    1. Gouw AA,
    2. Seewann A,
    3. van der Flier WM, et al
    . Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 2011;82:126–35 doi:10.1136/jnnp.2009.204685 pmid:20935330
    Abstract/FREE Full Text
  38. 38.↵
    1. Yang Q,
    2. Wei X,
    3. Deng B, et al
    . Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiol Dis 2022;170:105750 doi:10.1016/j.nbd.2022.105750 pmid:35580816
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Automated Quantification of Cerebral Microbleeds in SWI: Association with Vascular Risk Factors, White Matter Hyperintensity Burden, and Cognitive Function
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Ji Su Ko, Yangsean Choi, Eun Seon Jeong, Hyun-Jung Kim, Grace Yoojin Lee, Ji Eun Park, Namkug Kim, Ho Sung Kim
Automated Quantification of Cerebral Microbleeds in SWI: Association with Vascular Risk Factors, White Matter Hyperintensity Burden, and Cognitive Function
American Journal of Neuroradiology Mar 2025, DOI: 10.3174/ajnr.A8552

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Automated Microbleed Detection and Cognitive Links
Ji Su Ko, Yangsean Choi, Eun Seon Jeong, Hyun-Jung Kim, Grace Yoojin Lee, Ji Eun Park, Namkug Kim, Ho Sung Kim
American Journal of Neuroradiology Mar 2025, DOI: 10.3174/ajnr.A8552
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (1)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Quantifizierung zerebraler Mikroblutungen mit Deep Learning
    Neuroradiologie Scan 2025 15 02

More in this TOC Section

  • Automatic quantification and classification in IPD
  • DTI Quantifies Shunt Surgery Outcomes in iNPH
Show more Neurodegenerative Disorder Imaging

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire