This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
ABSTRACT
BACKGROUND AND PURPOSE: Spinal cord injury (SCI) in the pediatric population presents a unique challenge in diagnosis and prognosis due to the complexity of performing clinical assessments on children. Accurate evaluation of structural changes in the spinal cord is essential for effective treatment planning. This study aims to evaluate structural characteristics in pediatric patients with SCI by comparing cross-sectional area (CSA), anterior-posterior (AP) width, and right-left (RL) width across all vertebral levels of the spinal cord between typically developing (TD) and participants with SCI. We employed deep learning techniques to utilize these measures for detecting SCI cases and determining their injury severity.
MATERIALS AND METHODS: Sixty-one pediatric participants (ages 6-18), including 20 with chronic SCI and 41 TD, were enrolled and scanned using a 3T MRI scanner. All SCI participants underwent the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) test to assess their neurological function and determine their American Spinal Injury Association (ASIA) Impairment Scale (AIS) category. T2-weighted MRI scans were utilized to measure CSA, AP width, and RL widths along the entire cervical and thoracic cord. These measures were automatically extracted at every vertebral level of the spinal cord using the SCT toolbox. Deep convolutional neural networks (CNNs) were utilized to classify participants into SCI or TD groups and determine their AIS classification based on structural parameters and demographic factors such as age and height.
RESULTS: Significant differences (p<0.05) were found in CSA, AP width, and RL width between SCI and TD participants, indicating notable structural alterations due to SCI. The CNN-based models demonstrated high performance, achieving 96.59% accuracy in distinguishing SCI from TD participants. Furthermore, the models determined AIS category classification with 94.92% accuracy.
CONCLUSIONS: The study demonstrates the effectiveness of integrating cross-sectional structural imaging measures with deep learning methods for classification and severity assessment of pediatric SCI. The deep learning approach outperforms traditional machine learning models in diagnostic accuracy, offering potential improvements in patient care in pediatric SCI management.
ABBREVIATIONS: SCI = Spinal Cord Injury, TD = Typically Developing, CSA = Cross-Sectional Area, AP = Anterior-Posterior, RL = Right-Left, ASIA = American Spinal Injury Association, AIS = American Spinal Injury Association, CNN = Convolutional Neural Network.
Footnotes
The authors declare no conflicts of interest related to the content of this article.
- © 2025 by American Journal of Neuroradiology