Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Research ArticleBRAIN
Open Access

Different Patterns of Fornix Damage in Idiopathic Normal Pressure Hydrocephalus and Alzheimer Disease

T. Hattori, R. Sato, S. Aoki, T. Yuasa and H. Mizusawa
American Journal of Neuroradiology November 2011, DOI: https://doi.org/10.3174/ajnr.A2780
T. Hattori
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Sato
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Aoki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Yuasa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Mizusawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • Responses
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: The fornix contains efferent fibers of the hippocampus and is in close contact with the corpus callosum. Part of the fornix is directly attached to the corpus callosum, and another part is suspended from the corpus callosum via the septum pellucidum. DTI can be used to evaluate the morphology and microstructural integrity of the fornix. We examined the pattern of fornix damage in patients with iNPH or AD.

MATERIALS AND METHODS: We enrolled 22 patients with iNPH, 20 with AD, and 20 healthy controls. DTI data were obtained. The morphology (volume, length, and mean cross-sectional area) and FA values of the fornix were evaluated by using tract-specific analysis and compared among groups.

RESULTS: The volume, cross-sectional area, and FA value of the fornix were significantly smaller in patients with iNPH than in controls, whereas the length was significantly greater. In patients with AD, the volume, mean cross-sectional area, and FA value of the fornix were significantly smaller than those in controls, whereas the length was not altered. The fornix was significantly longer in patients with iNPH than in patients with AD, whereas the volume and cross-sectional areas were significantly smaller.

CONCLUSIONS: Our results suggest that the different pathogeneses of these diseases lead to fornix damage through different mechanisms: through mechanical stretching due to lateral ventricular enlargement and corpus callosum deformation in patients with iNPH, and through degeneration secondary to hippocampal atrophy in patients with AD.

Abbreviations

AD
Alzheimer disease
FA
fractional anisotropy
iNPH
idiopathic normal-pressure hydrocephalus
MMSE
Mini-Mental State Examination
  • © 2012 American Society of Neuroradiology

Indicates open access to non-subscribers at www.ajnr.org

Next
Back to top
Advertisement
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Different Patterns of Fornix Damage in Idiopathic Normal Pressure Hydrocephalus and Alzheimer Disease
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
T. Hattori, R. Sato, S. Aoki, T. Yuasa, H. Mizusawa
Different Patterns of Fornix Damage in Idiopathic Normal Pressure Hydrocephalus and Alzheimer Disease
American Journal of Neuroradiology Nov 2011, DOI: 10.3174/ajnr.A2780

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Different Patterns of Fornix Damage in Idiopathic Normal Pressure Hydrocephalus and Alzheimer Disease
T. Hattori, R. Sato, S. Aoki, T. Yuasa, H. Mizusawa
American Journal of Neuroradiology Nov 2011, DOI: 10.3174/ajnr.A2780
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
  • Info & Metrics
  • Responses
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (23)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus
    Abuzer Güngör, Serhat Baydin, Erik H. Middlebrooks, Necmettin Tanriover, Cihan Isler, Albert L. Rhoton
    Journal of Neurosurgery 2017 126 3
  • A review of β-amyloid neuroimaging in Alzheimer's disease
    Paul A. Adlard, Bob A. Tran, David I. Finkelstein, Patricia M. Desmond, Leigh A. Johnston, Ashley I. Bush, Gary F. Egan
    Frontiers in Neuroscience 2014 8
  • Neuroimaging in normal pressure hydrocephalus
    Benito Pereira Damasceno
    Dementia & Neuropsychologia 2015 9 4
  • Fornix as an imaging marker for episodic memory deficits in healthy aging and in various neurological disorders
    Vanessa Douet, Linda Chang
    Frontiers in Aging Neuroscience 2015 6
  • The role of diffusion tensor imaging and fractional anisotropy in the evaluation of patients with idiopathic normal pressure hydrocephalus: a literature review
    Ioannis Siasios, Eftychia Z. Kapsalaki, Kostas N. Fountas, Aggeliki Fotiadou, Alexander Dorsch, Kunal Vakharia, John Pollina, Vassilios Dimopoulos
    Neurosurgical Focus 2016 41 3
  • DTI-MRI biomarkers in the search for normal pressure hydrocephalus aetiology: a review
    David Hoza, Aleš Vlasák, Daniel Hořínek, Martin Sameš, Alex Alfieri
    Neurosurgical Review 2015 38 2
  • Progressive supranuclear palsy often develops idiopathic normal pressure hydrocephalus‐like magnetic resonance imaging features
    M. Ohara, T. Hattori, T. Yokota
    European Journal of Neurology 2020 27 10
  • Dynamic functional networks in idiopathic normal pressure hydrocephalus: Alterations and reversibility byCSFtap test
    Alessandra Griffa, Giulia Bommarito, Frédéric Assal, François R. Herrmann, Dimitri Van De Ville, Gilles Allali
    Human Brain Mapping 2021 42 5
  • Differential vulnerability of white matter structures to experimental infantile hydrocephalus detected by diffusion tensor imaging
    Ramin Eskandari, Osama Abdullah, Cameron Mason, Kelley E. Lloyd, Amanda N. Oeschle, James P. McAllister
    Child's Nervous System 2014 30 10
  • Difference in white matter microstructure in differential diagnosis of normal pressure hydrocephalus and Alzheimer's disease
    Daniel Hořínek, Irena Štěpán-Buksakowska, Nikoletta Szabó, Bradley J. Erickson, Eszter Tóth, Vlastimil Šulc, Vladimir Beneš, Jiří Vrána, Jakub Hort, Christopher Nimsky, Milan Mohapl, Miloslav Roček, László Vécsei, Zsigmond Tamás Kincses
    Clinical Neurology and Neurosurgery 2016 140

More in this TOC Section

  • Evaluating the Effects of White Matter Multiple Sclerosis Lesions on the Volume Estimation of 6 Brain Tissue Segmentation Methods
  • Quiet PROPELLER MRI Techniques Match the Quality of Conventional PROPELLER Brain Imaging Techniques
  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
Show more BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire