Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Review ArticlePRACTICE PERSPECTIVES

Qualifying Certainty in Radiology Reports through Deep Learning–Based Natural Language Processing

F. Liu, P. Zhou, S.J. Baccei, M.J. Masciocchi, N. Amornsiripanitch, C.I. Kiefe and M.P. Rosen
American Journal of Neuroradiology August 2021, DOI: https://doi.org/10.3174/ajnr.A7241
F. Liu
aFrom the Departments of Population and Quantitative Health Sciences (F.L., C.I.K.)
bRadiology (F.L., P.Z., S.J.B., M.J.M., N.A., M.P.R.), University of Massachusetts Medical School, Worcester, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F. Liu
P. Zhou
bRadiology (F.L., P.Z., S.J.B., M.J.M., N.A., M.P.R.), University of Massachusetts Medical School, Worcester, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Zhou
S.J. Baccei
bRadiology (F.L., P.Z., S.J.B., M.J.M., N.A., M.P.R.), University of Massachusetts Medical School, Worcester, Massachusetts
cDepartment of Radiology (S.J.B., M.J.M., N.A., M.P.R.), UMass Memorial Medical Center, Worcester, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.J. Baccei
M.J. Masciocchi
bRadiology (F.L., P.Z., S.J.B., M.J.M., N.A., M.P.R.), University of Massachusetts Medical School, Worcester, Massachusetts
cDepartment of Radiology (S.J.B., M.J.M., N.A., M.P.R.), UMass Memorial Medical Center, Worcester, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.J. Masciocchi
N. Amornsiripanitch
bRadiology (F.L., P.Z., S.J.B., M.J.M., N.A., M.P.R.), University of Massachusetts Medical School, Worcester, Massachusetts
cDepartment of Radiology (S.J.B., M.J.M., N.A., M.P.R.), UMass Memorial Medical Center, Worcester, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Amornsiripanitch
C.I. Kiefe
aFrom the Departments of Population and Quantitative Health Sciences (F.L., C.I.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.I. Kiefe
M.P. Rosen
bRadiology (F.L., P.Z., S.J.B., M.J.M., N.A., M.P.R.), University of Massachusetts Medical School, Worcester, Massachusetts
cDepartment of Radiology (S.J.B., M.J.M., N.A., M.P.R.), UMass Memorial Medical Center, Worcester, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.P. Rosen
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    American College of Radiology. ACR practice guidelines for communication of diagnostic imaging findings. 2014. Revised 2020. https://www.acr.org/-/media/acr/files/practice-parameters/communicationdiag.pdf. Accessed January 7, 2019
  2. 2.↵
    1. Swensen SJ,
    2. Johnson CD
    . Radiologic quality and safety: mapping value into radiology. J Am Coll Radiol 2005;2:992–1000 doi:10.1016/j.jacr.2005.08.003 pmid:17411982
    CrossRefPubMed
  3. 3.↵
    1. Lafortune M,
    2. Breton G,
    3. Baudouin JL
    . The radiological report: what is useful for the referring physician? Can Assoc Radiology J 1988;39:140–43 pmid:2967838
    PubMed
  4. 4.↵
    1. Lee B,
    2. Whitehead MT
    . Radiology reports: What YOU Think You’re Saying and What THEY Think You’re Saying. Curr Probl Diagn Radiol 2017;46:186–95 doi:10.1067/j.cpradiol.2016.11.005 pmid:28069356
    CrossRefPubMed
  5. 5.↵
    1. Gunn AJ,
    2. Tuttle MC,
    3. Flores EJ, et al
    . Differing interpretations of report terminology between primary care physicians and radiologists. J Am Coll Radiol 2016;13:1525–29.e1 doi:10.1016/j.jacr.2016.07.016 pmid:27595196
    CrossRefPubMed
  6. 6.↵
    1. Rosenkrantz AB
    . Differences in perceptions among radiologists, referring physicians, and patients regarding language for incidental findings reporting. AJR Am J Roentgenol 2017;208:140–43 doi:10.2214/AJR.16.16633 pmid:27657356
    CrossRefPubMed
  7. 7.↵
    1. Panicek DM,
    2. Hricak H
    . How sure are you, doctor? A standardized lexicon to describe the radiologist’s level of certainty. AJR Am J Roentgenol 2016;207:2–3 doi:10.2214/AJR.15.15895 pmid:27065212
    CrossRefPubMed
  8. 8.↵
    1. Hoang JK
    . Do not hedge when there is certainty. J Am Coll Radiol 2017;14:5 doi:10.1016/j.jacr.2016.08.027 pmid:27889193
    CrossRefPubMed
  9. 9.↵
    1. Pons E,
    2. Braun LM,
    3. Hunink MG, et al
    . Natural language processing in radiology: a systematic review. Radiology 2016;279:329–43 doi:10.1148/radiol.16142770 pmid:27089187
    CrossRefPubMed
  10. 10.↵
    1. Peng Y,
    2. Wang X,
    3. Lu L, et al
    . NegBio: a high-performance tool for negation and uncertainty detection in radiology reports. AMIA Jt Summits Transl Sci Proc 2018;2017:188–96 pmid:29888070
    PubMed
  11. 11.↵
    1. Agarwal S,
    2. Yu H
    . Detecting hedge cues and their scope in biomedical text with conditional random fields. J Biomed Inform 2010;43:953–61 doi:10.1016/j.jbi.2010.08.003 pmid:20709188
    CrossRefPubMed
  12. 12.↵
    1. Light M,
    2. Qiu XY,
    3. Srinivasan P
    . The Language of Bioscience: Facts, Speculations, and Statements In Between. HLT-NAACL 2004 Workshop: Linking Biological Literature, Ontologies and Databases. Association for Computational Linguistics 2004:17–24.
  13. 13.↵
    1. Shatkay H,
    2. Pan F,
    3. Rzhetsky A, et al
    . Multi-dimensional classification of biomedical text: toward automated, practical provision of high-utility text to diverse users. Bioinformatics 2008;24:2086–93 doi:10.1093/bioinformatics/btn381 pmid:18718948
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Vincze V,
    2. Szarvas G,
    3. Móra G, et al
    . Linguistic scope-based and biological event-based speculation and negation annotations in the BioScope and Genia Event corpora. J Biomed Semantics 2011;2(Suppl 5):S8 doi:10.1186/2041-1480-2-S5-S8 pmid:22166355
    CrossRefPubMed
  15. 15.↵
    1. Sorin V,
    2. Barash Y,
    3. Konen E, et al
    . Deep learning for natural language processing in radiology: fundamentals and a systematic review. J Am Coll Radiol 2020;17:639–48 doi:10.1016/j.jacr.2019.12.026 pmid:32004480
    CrossRefPubMed
  16. 16.↵
    1. South BR,
    2. Shen S,
    3. Leng J, et al
    . A prototype tool set to support machine-assisted annotation. In: Proceedings of the 2012 Workshop on Biomedical Natural Language Processing, Montreal, Canada. June 8, 2012:130–39
  17. 17.↵
    1. Uzuner Ö,
    2. South BR,
    3. Shen S, et al
    . 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc 2011;18:552–56 doi:10.1136/amiajnl-2011-000203 pmid:21685143
    CrossRefPubMed
  18. 18.↵
    1. South BR,
    2. Mowery D,
    3. Suo Y, et al
    . Evaluating the effects of machine pre-annotation and an interactive annotation interface on manual de-identification of clinical text. J Biomed Inform 2014;50:162–72 doi:10.1016/j.jbi.2014.05.002 pmid:24859155
    CrossRefPubMed
  19. 19.↵
    Medical diagnosis. Wikipedia. 2019. https://en.wikipedia.org/w/index.php?title=Medical_diagnosis&oldid=900598243. Accessed June 15, 2019
  20. 20.↵
    1. Landis JR,
    2. Koch GG
    . The measurement of observer agreement for categorical data. Biometrics 1977;33:159–74 pmid:843571
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Young T,
    2. Hazarika D,
    3. Poria S, et al
    . Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag 2018:13:55–75 doi:10.1109/MCI.2018.2840738
    CrossRef
  22. 22.↵
    1. Kim Y
    . Convolutional Neural Networks for Sentence Classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar. October 25–29, 2014:1746–51 doi:10.3115/v1/D14-1181
    CrossRef
  23. 23.↵
    1. Liu P,
    2. Qiu X,
    3. Huang X
    . Recurrent neural network for text classification with multi-task learning. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, New York. July 9–15, 2016:2873–79
  24. 24.↵
    1. Tan C,
    2. Sun F,
    3. Kong T, et al
    . A survey on deep transfer learning. arXiv 2018 http://arxiv.org/abs/1808.01974. Accessed May 24, 2019
  25. 25.↵
    1. Devlin J,
    2. Chang MW,
    3. Lee K, et al
    . BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota. June 2–7, 2019:4171–86 doi:10.18653/v1/N19-1423
    CrossRef
  26. 26.↵
    1. Vaswani A,
    2. Shazeer N,
    3. Parmar N, et al
    . Attention is all you need. In: Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, California. December 4–9, 2017:5998–6008
  27. 27.↵
    1. Bird S,
    2. Klein E,
    3. Loper E
    . Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Inc; July 21, 2009
  28. 28.↵
    1. Wu Y,
    2. Schuster M,
    3. Chen Z, et al
    . Google’s Neural Machine Translation system: bridging the gap between human and machine translation. arXiv 2016. http://arxiv.org/abs/1609.08144. Accessed April 16, 2019
  29. 29.↵
    1. Srivastava N,
    2. Hinton G,
    3. Krizhevsky A, et al
    . Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929–58
    CrossRef
  30. 30.↵
    1. Lee J,
    2. Yoon W,
    3. Kim S, et al
    . BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 2020;36:1234–40 doi:10.1093/bioinformatics/btz682 pmid:31501885
    CrossRefPubMed
  31. 31.↵
    1. Alsentzer E,
    2. Murphy J,
    3. Boag W, et al
    . Publicly available clinical BERT embeddings. Proceedings of the 2nd Clinical Natural Language Processing Workshop, Minneapolis, Minnesota. 2019;72–78 doi:10.18653/v1/W19-1909
    CrossRef
  32. 32.↵
    1. Johnson AE,
    2. Pollard TJ,
    3. Shen L, et al
    . MIMIC-III: a freely accessible critical care database. Sci Data 2016;3:160035 doi:10.1038/sdata.2016.35 pmid:27219127
    CrossRefPubMed
  33. 33.↵
    1. Shinagare AB,
    2. Alper DP,
    3. Hashemi R, et al
    . Early adoption of a certainty scale to improve diagnostic certainty communication. J Am Coll Radiol 2020;17:1276–84 doi:10.1016/j.jacr.2020.03.033 pmid:32387371
    CrossRefPubMed
  34. 34.↵
    1. Li R,
    2. Hu B,
    3. Liu F, et al
    . Detection of bleeding events in electronic health record notes using convolutional neural network models enhanced with recurrent neural network autoencoders: deep learning approach. JMIR Med Inform 2019;7:e10788 doi:10.2196/10788 pmid:30735140
    CrossRefPubMed
  35. 35.↵
    1. Tang YP,
    2. Li GX,
    3. Huang SJ
    . ALiPy: active learning in Python. arXiv 2019. http://arxiv.org/abs/1901.03802. Accessed June 17, 2019
  36. 36.↵
    1. Tzeng E,
    2. Hoffman J,
    3. Saenko K, et al
    . Adversarial discriminative domain adaptation. arXiv 2017. https://arxiv.org/abs/1702.05464. Accessed May 20, 2019
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Qualifying Certainty in Radiology Reports through Deep Learning–Based Natural Language Processing
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
F. Liu, P. Zhou, S.J. Baccei, M.J. Masciocchi, N. Amornsiripanitch, C.I. Kiefe, M.P. Rosen
Qualifying Certainty in Radiology Reports through Deep Learning–Based Natural Language Processing
American Journal of Neuroradiology Aug 2021, DOI: 10.3174/ajnr.A7241

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Qualifying Certainty in Radiology Reports through Deep Learning–Based Natural Language Processing
F. Liu, P. Zhou, S.J. Baccei, M.J. Masciocchi, N. Amornsiripanitch, C.I. Kiefe, M.P. Rosen
American Journal of Neuroradiology Aug 2021, DOI: 10.3174/ajnr.A7241
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Creating an Ignorance-Base: Exploring Known Unknowns in the Scientific Literature
  • Creating an Ignorance-Base: Exploring Known Unknowns in the Scientific Literature
  • Crossref (4)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Accuracy of ChatGPT generated diagnosis from patient's medical history and imaging findings in neuroradiology cases
    Daisuke Horiuchi, Hiroyuki Tatekawa, Taro Shimono, Shannon L Walston, Hirotaka Takita, Shu Matsushita, Tatsushi Oura, Yasuhito Mitsuyama, Yukio Miki, Daiju Ueda
    Neuroradiology 2024 66 1
  • Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT)
    Jia Li, Yucong Lin, Pengfei Zhao, Wenjuan Liu, Linkun Cai, Jing Sun, Lei Zhao, Zhenghan Yang, Hong Song, Han Lv, Zhenchang Wang
    BMC Medical Informatics and Decision Making 2022 22 1
  • An open chest X-ray dataset with benchmarks for automatic radiology report generation in French
    Hichem Metmer, Xiaoshan Yang
    Neurocomputing 2024 609
  • A novel explainable machine learning-based healthy ageing scale
    Katarina Gašperlin Stepančič, Ana Ramovš, Jože Ramovš, Andrej Košir
    BMC Medical Informatics and Decision Making 2024 24 1

More in this TOC Section

PRACTICE PERSPECTIVES

  • Am I Ready to Be an Independent Neuroradiologist? Objective Trends in Neuroradiology Fellows' Performance during the Fellowship Year
  • Displaying Multiphase CT Angiography Using a Time-Variant Color Map: Practical Considerations and Potential Applications in Patients with Acute Stroke
Show more PRACTICE PERSPECTIVES

FUNCTIONAL

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more FUNCTIONAL

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire