Research ArticleBRAIN
Regional Differences and Metabolic Changes in Normal Aging of the Human Brain: Proton MR Spectroscopic Imaging Study
Emmanuelle Angelie, Alain Bonmartin, Abdel Boudraa, Pierre-Marie Gonnaud, Jean-Jacques Mallet and Dominique Sappey-Marinier
American Journal of Neuroradiology January 2001, 22 (1) 119-127;
Emmanuelle Angelie
Alain Bonmartin
Abdel Boudraa
Pierre-Marie Gonnaud
Jean-Jacques Mallet
Dominique Sappey-Marinier

References
- ↵Von Dras DD, Blumenthal HT. Dementia of the aged: disease or atypical-accelerated aging? biopathological and psychological perspectives. J Am Geriatr Soc 1992;40:285-294
- ↵Mrak RE, Griffin ST, Graham DI. Aging-associated changes in human brain. J Neuropathol Exp Neurol 1997;56:1269-1275
- ↵Terry RD, DeTeresa R, Hansen LA. Neocortical cell counts in normal human adult aging. Ann Neurol 1987;21:530-539
- ↵Hatanpaa K, Isaacs KR, Shirao T, Brady DR, Rapoport SI. Loss of proteins regulating synaptic plasticity in normal aging of the human brain and in Alzheimer disease. J Neuropathol Exp Neurol 1999;58:637-643
- ↵Double KL, Halliday GM, Kril JJ, et al. Topography of brain atrophy during normal aging and Alzheimer's disease. Neurobiol Aging 1996;17:513-521
- Raz N, Gunning FM, Head D, et al. Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cerebral Cortex 1997;7:268-282
- Lim KO, Zipursky RB, Watts MC, Pfefferbaum A. Decreased gray matter in normal aging: an in vivo magnetic resonance study. J Gerontol 1992;47:b26-b30
- Guttmann CRG, Killiany RJ, Moss MB, Sandor T, Albert MS, Jolesz FA. White matter changes with normal aging. Neurobiology 1998;50:972-978
- ↵Almkvist O, Wahlund L-O, Andersson-Lundman G, Basun H, Backman J. White matter hyperintensity and neuropsychological functions in dementia and healthy aging. Arch Neurol 1992;49:626-632
- Rao SM, Mittenberg W, Bernardin L, Haughton V, Leo GJ. Neurological test findings in subjects with leukoariosis. Arch Neurol 1997;49:40-44
- Leenders KL, Perani D, Lammertsma AA, et al. Cerebral blood flow, blood volume and oxygen utilization: normal values and effect of age. Brain 1990;113:27-47
- Meyer JS, Terayama Y, Takashima S. Cerebral circulation in the elderly. Cereb Brain Metab Rev 1993;5:122-146
- Pantano P, Baron J-C, Lebrun-Grandié P, Duquesnoy N, Bousser M-G, Comar D. Regional cerebral blood flow oxygen consumption in human aging. Stroke 1984;15:635-641
- ↵Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E, Gur RE. Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 1995;36:1141-1149
- ↵Christiansen P, Toft P, Larsson HBW, Stubgaard M, Henriksen O. The concentration of N-acetyl aspartate, creatine + phophocreatine, and choline in different parts of the brain in adulthood and senium. Magn Reson Imaging 1993;11:799-806
- Fukuzako H, Hashiguchi T, Sakamoto Y, et al. Metabolite changes with age measured by proton magnetic resonance spectroscopy in normal subjects. Psychiatry Clin Neurosci 1997;51:261-263
- ↵Chang L, Ernst T, Poland RE, Jenden DJ. In vivo proton magnetic resonance spectroscopy of the normal aging human brain. Life Sci 1996;58:2049-2056
- ↵Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM. Aging of the adult human brain: in vivo quantification of metabolite content with proton magnetic resonance spectroscopy. J Magn Reson Imaging 1999;9:711-716
- ↵Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG. Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 1994;44:1411-1417
- ↵Preul MC, Caramanos Z, Collins DL, et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 1996;2:323-325
- Graham GD, Blamire AM, Rothman DL, et al. Early temporal variation of cerebral metabolites after human stroke: a proton magnetic resonance spectroscopy study. Stroke 1993;24:1891-1896
- Kwo-On-Yuen PF, Newmark RD, Budinger TF, Kaye JA, Ball MJ, Jagust WJ. Brain N-acetyl-L-aspartic acid in Alzheimer's disease: a proton magnetic resonance spectroscopy study. Brain Res 1994;667:167-174
- ↵Urenjak J, Williams RJ, Gadian DG, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993;13:981-989
- ↵Lim KO, Spielman DM. Estimating NAA in cortical gray matter with applications for measuring changes due to aging. Magn Reson Med 1997;37:372-377
- ↵DeStefano N, Matthews PM, Fu L, et al. Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis: results of a longitudinal magnetic resonance spectroscopy study. Brain 1998;121:1469-1477
- ↵Longo R, Ricci C, Dalla Palma L, et al. Quantitative 31P MRS of the normal adult human brain: assessment of interindividual differences and ageing effects. NMR Biomed 1993;6:53-57
- Soher BJ, Van Zijl PCM, Duyn JH, Barker PB. Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 1996;35:356-363
- Pfefferbaum A, Adalsteinsson E, Spielman D, Sullivan EV, Lim KO. In vivo spectroscopic quantification of the N-acetyl moiety, creatine, and choline from large volumes of brain gray and white matter: effects of normal aging. Magn Reson Med 1999;41:276-284
- Lundbom N, Barnett A, Bonavita S, et al. MR image segmentation and tissue metabolite contrast in 1H spectroscopic imaging of normal and aging brain. Magn Reson Med 1999;41:841-845
- Tedeschi G, Bertolino A, Righini A, et al. Brain regional distribution pattern of metabolite signal intensities in young adults by proton magnetic resonance spectroscopic imaging. Neurology 1995;45:1384-1391
- Pouwels PJW, Frahm J. Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med 1998;39:53-60
- ↵Frahm J, Bruhn H, Gyngell ML, Merbolt KD, Hänicke W, Sauter R. Localized proton NMR spectroscopy in different regions of the human brain in vivo: relaxation times and concentrations of cerebral metabolites. Magn Reson Med 1989;11:47-63
- ↵Folstein MF, Folstein SE, McHugh PR. Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189-198
- ↵Patt SL, Sykes BD. T1 water eliminated Fourier transform NMR spectroscopy. J Chem Phys 1972;55:3182-3184
- ↵Den Hollander JA, Oosterwaal B, Van Vroonhoven H, Luyten PR. Elimination of magnetic field distortions in 1H NMR spectroscopic imaging. Presented at the Annual Meeting of the Society of Magnetic Resonance in Medicine, San Francisco, August 1991
- ↵Roth K, Kimber BJ, Feeney J. Data shift accumulation and alternate delay accumulation techniques for overcoming dynamic range problems. J Magn Reson 1980;41:302-304
- ↵Tou JT, Gonzalez RC. Pattern Recognition Principles.. Reading, Ma: Addison-Wesley 1974;
- ↵Hugg JW, Laxer KD, Matson GB, et al. Neuronal loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 1993;34:788-794
- Breiter SN, Arroyo S, Mathews VP, Lesser RP, Bryan RN, Barker PB. Proton MR spectroscopy in patients with seizure disorder. AJNR Am J Neuroradiol 1994;15:373-384
- ↵
- ↵Arnold SE, Trojanowski JQ. Human fetal hippocampal development: I. cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J Comp Neurol 1996;376:274-292
- Doyle TJ, Bedell BJ, Narayama PA. Relative concentrations of proton MR visible neurochemicals in gray and white matter in human brain. Magn Reson Med 1995;33:755-759
- Wang Y, Li SJ. Differentiation of metabolic concentrations between gray matter and white matter of human brain by in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 1998;39:28-33
- Duc CO, Weber OM, Trabesinger AH, Meier D, Boesiger P. Quantitative 1H MRS of the human brain in vivo based on the simulation phantom calibration strategy. Magn Reson Med 1998;39:491-496
- Pan JW, Twieg DB, Hetherington HP. Quantitative spectroscopic imaging of the human brain. Magn Reson Med 1998;40:363-369
- Hetherington HP, Mason GF, Pan JW, et al. Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1T. Magn Reson Med 1994;32:565-571
- Sappey-Marinier D, Calabrese G, Hetherington HP, et al. Proton magnetic resonance spectroscopy of human brain: application to normal white matter, chronic infarction, and MRI white matter signal hyperintensities. Magn Reson Med 1991;26:313-327
- Meyerhoff DJ, Mac Kay S, Constans JM, et al. Axonal injury and membrane alterations in Alzheimer's disease suggested by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 1994;36:40-47
- ↵Fulham MJ, Dietz MJ, Duyn JH. Transsynaptic reduction in N-acetylaspartate in cerebellar diaschisis: a proton MR spectroscopic imaging study. J Comput Assist Tomogr 1994;18:697-704
- ↵Moffset JR, Namboori MA, Cangro CB, Neale JH. Immunohistochemical localization of N-acetylaspartate in rat brain. Neuroreport 1991;2:131-134
- Miller B. A review of chemical issues in 1H NMR spectroscopy: N-Acetyl-L-aspartate, creatine and choline. NMR Biomed 1991;4:47-52
- ↵Taylor DL, Davies SE, Obrenovitch TP, et al. Investigation into the role of N-acetylaspartate in cerebral osmoregulation. J Neurochem 1995;65:275-281
- Vion-Dury J, Confort-Gouny S, Nicoli F, et al. Localized brain proton MRS metabolic patterns in HIV-related encephalopathies. C R Acad Sci III 1994;317:833-840
- ↵Simic G, Kostovic I, Winblad B, Bogdanovic N. Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease. J Comp Neurol 1997;379:482-494
- Matsumae M, Kikinis R, Morocz I, et al. Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance. J Neurosurg 1996;84:982-991
- Kreis R, Ernst T, Ross BD. Development of human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 1993;30:424-437
- Moats RA, Ernst T, Shonk TK, Ross BD. Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Imag 1994;32:110-115
- ↵Rouser G, Yamamoto A. Curvilinear regression course of human brain lipid composition changes with age. Lipids 1998;3:284-287
- ↵Giusto NM, Roque ME, Ilincheta de Bochero MG. Effect of aging on the content, composition and synthesis of sphingomyelin in the central nervous system. Lipids 1992;27:835-839
- ↵Birken DL, Oldendorf WH. N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neuro Behav Rev 1989;13:23-31
- ↵Wiedermann D, Schuff N, Matson G, Soher B, Maudsley AA, Weiner MW. Test-reliability of short multislice 1H MRSI. Presented at the Annual Meeting of the International Society for Magnetic Resonance in Medicine, Denver, April 2000
- ↵Sullivan EV, Marsh L, Mathalon DH, Lim KO, Pfefferbaum A. Age-decline in MRI volumes of temporal lobe gray matter but not hippocampus. Neurobiol Aging 1995;16:591-606
- Constans JM, Meyerhoff DJ, Gerson J, et al. H-1 MR spectroscopic imaging of white matter signal hyperintensities: Alzheimer disease and ischemic vascular dementia. Radiology 1995;197:517-523
- ↵Schuff N, Amend D, Ezekiel F, et al. Changes of hippocampal N-acetyl aspartate and volume in Alzheimer's disease. Neurology 1997;49:1513-1521
In this issue
Advertisement
Emmanuelle Angelie, Alain Bonmartin, Abdel Boudraa, Pierre-Marie Gonnaud, Jean-Jacques Mallet, Dominique Sappey-Marinier
Regional Differences and Metabolic Changes in Normal Aging of the Human Brain: Proton MR Spectroscopic Imaging Study
American Journal of Neuroradiology Jan 2001, 22 (1) 119-127;
0 Responses
Jump to section
Related Articles
- No related articles found.
Cited By...
- Age dependency of neurometabolite T1 relaxation times
- The developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood
- sLASER and PRESS Perform Similarly at Revealing Metabolite-Age Correlations
- Evaluation of Normal Changes in Pons Metabolites due to Aging Using Turbo Spectroscopic Imaging
- Alzheimer Disease: Focus on Computed Tomography
- Hippocampal neurochemistry, neuromorphometry, and verbal memory in nondemented older adults
- Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons
- Is NAA reduction in normal contralateral cerebral tissue in stroke patients dependent on underlying risk factors?
- White matter damage on diffusion tensor imaging correlates with age-related cognitive decline
- Effects of chronic lead exposure on 1H MRS of hippocampus and frontal lobes in children
This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.
More in this TOC Section
Similar Articles
Advertisement