Abstract
BACKGROUND AND PURPOSE: The purpose of this work was to evaluate angiographic CT (ACT) in the combined application of a self-expanding neurovascular stent and detachable platinum coils in the management of broad-based and fusiform intracranial aneurysms.
MATERIALS AND METHODS: Eleven patients harboring wide-necked intracranial aneurysms were treated with a flexible self-expanding neurovascular stent and subsequent aneurysm embolization with platinum microcoils. ACT was performed after the interventional procedure to analyze stent position and the relationship of coils to the stent. Postprocessing included multiplanar reconstructions (MPRs) and maximum intensity projections (MIPs). ACT volume datasets were postprocessed for soft tissue visualization.
RESULTS: Accurate stent placement with subsequent coil occlusion of the aneurysms was feasible in all of the patients. Similar to nonsubtracted digital subtraction angiography (DSA) images, radiopaque platinum stent markers showed excellent visibility in ACT as well. The stent struts themselves, hardly visible in nonsubtracted DSA, were visible in MPRs and MIPs of ACT in all of the patients. In aneurysms larger than 10 mm in diameter, accurate stent assessment at the level of the coils was limited due to beam hardening artifacts. Postprocedural ACT in all of the patients did not reveal any evidence of procedure-related intracranial hemorrhage.
CONCLUSION: ACT provides cross-sectional, 3D visualization of endovascular stents otherwise hardly visible with plain fluoroscopy. ACT enables us to accurately determine stent position, which may be helpful in complex stent-assisted aneurysm coiling procedures. However, in aneurysms larger than 10 mm in diameter, beam hardening artifacts caused by the endoaneurysmal coil package impair visibility of the stent. Further data are necessary to evaluate the usefulness of ACT in stent-assisted aneurysm coiling.
- Copyright © American Society of Neuroradiology