Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Review ArticleReview Articles
Open Access

MR Spectroscopy in Radiation Injury

P.C. Sundgren
American Journal of Neuroradiology September 2009, 30 (8) 1469-1476; DOI: https://doi.org/10.3174/ajnr.A1580
P.C. Sundgren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. ↵
    1. Walker MD,
    2. Strike TA,
    3. Sheline GE
    . An analysis of dose-effect relationship in the radiotherapy of malignant gliomas. Int J Radiat Oncol Biol Phys 1979; 5: 1725– 31
    CrossRefPubMedWeb of Science
  2. ↵
    1. Johannesen TB,
    2. Lien HH,
    3. Hole KH,
    4. et al
    . Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother Oncol 2003; 69: 169– 76
    CrossRefPubMed
  3. ↵
    1. Bonavita S,
    2. Di Salle F,
    3. Tedeschi G
    . Proton MRS in neurological disorders. Eur J Radiol 1999; 30: 125– 31
    CrossRefPubMedWeb of Science
  4. ↵
    1. Langleben DD,
    2. Segall GM
    . PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 2000; 41: 1861– 67
    Abstract/FREE Full Text
  5. ↵
    1. Terakawa Y,
    2. Tsuyuguchi N,
    3. Iwai Y,
    4. et al
    . Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008; 49: 694– 99
    Abstract/FREE Full Text
  6. ↵
    1. Hein PA,
    2. Eskey CJ,
    3. Dunn JF,
    4. et al
    . Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 2004; 25: 201– 09
    Abstract/FREE Full Text
  7. ↵
    1. Sundgren PC,
    2. Fan X,
    3. Weybright P,
    4. et al
    . Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast enhancing lesions. Magn Reson Imaging 2006; 24: 1131– 42. Epub 2006 Sep 18
    CrossRefPubMedWeb of Science
  8. ↵
    1. Sugahara T,
    2. Korogi Y,
    3. Tomiguchi S,
    4. et al
    . Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 2000; 21: 901– 09
    Abstract/FREE Full Text
  9. ↵
    1. Jain R,
    2. Scarpace L,
    3. Ellika S,
    4. et al
    . First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery 2007; 61: 778– 86
    PubMedWeb of Science
  10. ↵
    1. Di Chiro G,
    2. Oldfield E,
    3. Wright DC
    . Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR Am J Roentgenol 1988; 150: 189– 97
    CrossRefPubMedWeb of Science
  11. ↵
    1. Thompson TP,
    2. Lunsford LD,
    3. Kondziolka D
    . Distinguishing recurrent tumor and radiation necrosis with positron emission tomography versus stereotactic biopsy. Stereotact Funct Neurosurg 1999; 73: 9– 14
    CrossRefPubMed
  12. ↵
    1. Carvalho PA,
    2. Schwartz RB,
    3. Alexander E,
    4. et al
    . Detection of recurrent gliomas with qualitative thallium-201/technetium 99m HMPAO single-photon emission computerized tomography. J Neurosurg 1992; 77: 565– 70
    PubMed
  13. ↵
    1. Schwartz RB,
    2. Carvalho PA,
    3. Alexander E,
    4. et al
    . Radiation necrosis vs high-grade recurrent glioma: differentiation by using dualisotope SPECT with 201Tl and 99mTc-HMPAO. AJNR Am J Neuroradiol 1991; 12: 1187– 92
    Abstract/FREE Full Text
  14. ↵
    1. Schwartz RB,
    2. Holman BL,
    3. Polak JF,
    4. et al
    . Dual-isotope single-photon emission computerized tomography scanning in patients with glioblastoma multiforme: association with patient survival and histopathological characteristics of tumor after high-dose radiotherapy. J Neurosurg 1998; 89: 60– 68
    PubMedWeb of Science
  15. ↵
    1. Matheja P,
    2. Rickert C,
    3. Weckesser M,
    4. et al
    . Scintigraphic pitfall: delayed radionecrosis—case illustration. J Neurosurg 2000; 92: 732
    CrossRefPubMed
  16. ↵
    1. Barajas RF,
    2. Chang JS,
    3. Sneed PK,
    4. et al
    . Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2009; 30: 367– 72. Epub 2008 Nov 20
    Abstract/FREE Full Text
  17. ↵
    1. Kumar AJ,
    2. Leeds NE,
    3. Fuller GN,
    4. et al
    . Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000; 217: 377– 84
    CrossRefPubMedWeb of Science
  18. ↵
    1. Marks JE,
    2. Baglan RJ,
    3. Prassad SC,
    4. et al
    . Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 1981; 7: 243– 52
    CrossRefPubMedWeb of Science
  19. ↵
    1. Belka C,
    2. Budach W,
    3. Kortmann RD,
    4. et al
    . Radiation-induced CNS toxicity: molecular and cellular mechanisms. Br J Cancer 2001; 85: 1233– 9
    CrossRefPubMedWeb of Science
  20. ↵
    1. Swaya MD
    1. Sawaya R
    . The fibrinolytic enzymes in the biology of brain tumors. In: Swaya MD. Fibrinolysis and the Central Nervous System. Philadelphia: Hanley and Belfus; 1990: 106– 26
  21. ↵
    1. Castel JC,
    2. Caille JM
    . Imaging of irradiated brain tumors: value of magnetic resonance imaging. J Neuroradiol 1989; 16: 81– 132
    PubMed
  22. ↵
    1. Gutin PH,
    2. Leibel SA,
    3. Sheline GE
    1. Burger PC,
    2. Boyko OB
    . The pathology of central nervous system radiation injury. In: Gutin PH, Leibel SA, Sheline GE. Radiation Injury to the Nervous System. New York: Raven; 1991: 191– 208
  23. ↵
    1. Khong PL,
    2. Leung LH,
    3. Fung AS,
    4. et al
    . White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol 2006; 24: 884– 90
    Abstract/FREE Full Text
  24. ↵
    1. Moretti R,
    2. Torre P,
    3. Antonello RM,
    4. et al
    . Neuropsychological evaluation of late-onset post-radiotherapy encephalopathy: a comparison with vascular dementia. J Neurol Sci 2005; 229–230: 195– 200. Epub 2004 Dec 19
  25. ↵
    1. Cole PD,
    2. Kamen BA
    . Delayed neurotoxicity associated with therapy for children with acute lymphoblastic leukemia. Ment Retard Dev Disabil Res Rev 2006; 12: 174– 83
    CrossRefPubMed
  26. ↵
    1. Herman MA,
    2. Tremont-Lukats I,
    3. Meyers CA,
    4. et al
    . Neurocognitive and functional assessment of patients with brain metastases: a pilot study. Am J Clin Oncol 2003; 26: 273– 79
    CrossRefPubMed
  27. ↵
    1. Constine LS,
    2. Konski A,
    3. Ekholm S,
    4. et al
    . Adverse effects of brain irradiation correlated with MR and CT imaging. Int J Radiat Oncol Biol Phys 1988; 15: 319– 30
    CrossRefPubMedWeb of Science
  28. ↵
    1. Packer RJ,
    2. Zimmerman RA,
    3. Bilaniuk LT
    . Magnetic resonance imaging in the evaluation of treatment-related central nervous system damage. Cancer 1986; 58: 635– 40
    CrossRefPubMed
  29. ↵
    1. Price RE,
    2. Langford LA,
    3. Jackson EF,
    4. et al
    . Radiation-induced morphologic changes in the rhesus monkey (Macaca mulatta) brain. J Med Primatol 2001; 30: 81– 87
    CrossRefPubMed
  30. ↵
    1. Benczik J,
    2. Tenhunen M,
    3. Snellman M,
    4. et al
    . Late radiation effects in the dog brain: correlation of MRI and histological changes. Radiother Oncol 2002; 63: 107– 20
    CrossRefPubMed
  31. ↵
    1. Chiang CS,
    2. McBride WH,
    3. Withers HR
    . Myelin-associated changes in mouse brain following irradiation. Radiother Oncol 1993; 27: 229– 36
    CrossRefPubMed
  32. ↵
    1. Burger PC,
    2. Mahley MS Jr.,
    3. Dudka L,
    4. et al
    . The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 1979; 44: 1256– 72
    CrossRefPubMedWeb of Science
  33. ↵
    1. Armstrong CL,
    2. Gyato K,
    3. Awadalla AW,
    4. et al
    . A critical review of the clinical effects of therapeutic irradiation damage to the brain: the roots of controversy. Neuropsychol Rev 2004; 14: 65– 86
    CrossRefPubMedWeb of Science
  34. ↵
    1. Mikhael MA
    . Radiation necrosis of the brain: correlation between patterns on CT and dose of radiation. J Comput Assist Tomogr 1979; 3: 241– 49
    PubMedWeb of Science
  35. ↵
    1. Nagesh V,
    2. Tsien CI,
    3. Chenevert TL,
    4. et al
    . Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor imaging study. Int J Radiat Oncol Biol Phys 2008; 70: 1002– 10
    PubMed
  36. ↵
    1. Sundgren PC,
    2. Nagesh V,
    3. Elias A,
    4. et al
    . Metabolic alterations: a biomarker for radiation-induced injury of normal brain—a spectroscopy study. J Magn Reson Imaging 2009; 29: 291– 97
    CrossRefPubMed
  37. ↵
    1. Lee MC,
    2. Pirzkall A,
    3. McKnight TR,
    4. et al
    . 1H-MRS of radiation effects in normal-appearing white matter: dose-dependence and impact on automated spectral classification. J Magn Reson Imaging 2004; 19: 379– 88
    CrossRefPubMedWeb of Science
  38. ↵
    1. Tofilon PJ,
    2. Fike JR
    . The radioresponse of the central nervous system: a dynamic process. Radiat Res 2000; 153: 357– 70
    CrossRefPubMedWeb of Science
  39. ↵
    1. Bates TE,
    2. Strangeward M,
    3. Keelan J,
    4. et al
    . Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 1992; 7: 1397– 400
  40. ↵
    1. de Stefano N,
    2. Matthews PM,
    3. Arnold DL
    . Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 1995; 34: 721– 27
    CrossRefPubMedWeb of Science
  41. ↵
    1. Estève F,
    2. Rubin C,
    3. Grand S,
    4. et al
    . Transient metabolic changes observed with proton MR spectroscopy in normal human brain after radiation therapy. Int J Radiat Oncol Biol Phys 1998; 40: 279– 86
    CrossRefPubMedWeb of Science
  42. ↵
    1. Chan YL,
    2. Roebuck DJ,
    3. Yuen MP,
    4. et al
    . Long-term cerebral metabolite changes on proton magnetic resonance spectroscopy in patients cured of acute lymphoblastic leukemia with previous intrathecal methotrexate and cranial irradiation prophylaxis. Int J Radiat Oncol Biol Phys 2001; 50: 759– 63
    CrossRefPubMedWeb of Science
  43. ↵
    1. Isobe T,
    2. Matsumura A,
    3. Anno I,
    4. et al
    . Changes in 1H-MRS in glioma patients before and after irradiation: the significance of quantitative analysis of choline-containing compounds [in Japanese]. No Shinkei Geka 2003; 31: 167– 72
    PubMed
  44. ↵
    1. Walecki J,
    2. Sokól M,
    3. Pieniazek P,
    4. et al
    . Role of short TE 1H-MR spectroscopy in monitoring of post-operation irradiated patients. Eur J Radiol 1999; 30: 154– 61
    CrossRefPubMed
  45. ↵
    1. Kitahara S,
    2. Nakasu S,
    3. Murata K,
    4. et al
    . Evaluation of treatment-induced cerebral white matter injury by using diffusion-tensor MR imaging: initial experience. AJNR Am J Neuroradiol. 2005; 26: 2200– 06
    Abstract/FREE Full Text
  46. ↵
    1. Sundgren PC,
    2. Rogers L,
    3. Tsien CT,
    4. et al
    . Correlation of Magnetic Resonance Imaging Morphologic Abnormalities, Magnetic Resonance Spectroscopy and Radiation Treatment Dose-Volumes in Histological Proven Cerebral Radiation Necrosis. Proceedings of the European Society of Neuroradiology, Krakow, Poland, September 18–21, 2008
  47. ↵
    1. Chong VF,
    2. Rumpel H,
    3. Fan YF,
    4. et al
    . Temporal lobe changes following radiation therapy: imaging and proton MR spectroscopic findings. Eur Radiol 2001; 11: 317– 24
    CrossRefPubMed
  48. ↵
    1. Chong VF,
    2. Rumpel H,
    3. Aw YS,
    4. et al
    . Temporal lobe necrosis following radiation therapy for nasopharyngeal carcinoma: 1H MR spectroscopic findings. Int J Radiat Oncol Biol Phys 1999; 45: 699– 705
    CrossRefPubMed
  49. ↵
    1. Schlemmer JP,
    2. Bachert P,
    3. Henze M,
    4. et al
    . Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy. Neuroradiology 2002; 44: 216– 22
    CrossRefPubMedWeb of Science
  50. ↵
    1. Schlemmer HP,
    2. Bachert P,
    3. Herfarth K,
    4. et al
    . Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am J Neuroradiol 2001; 22: 1316– 24
    Abstract/FREE Full Text
  51. ↵
    1. Castillo M,
    2. Kwock L,
    3. Mukherji SK
    . Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol 1996; 17: 1– 15
    PubMedWeb of Science
  52. ↵
    1. Yeung DK,
    2. Chan Y,
    3. Leung S,
    4. et al
    . Detection of an intense resonance at 2.4 ppm in 1H MR spectra of patients with severe late-delayed, radiation-induced brain injuries. Magn Reson Med 2001; 45: 994– 1000
    CrossRefPubMed
  53. ↵
    1. Rock JP,
    2. Scarpace L,
    3. Hearshen D,
    4. et al
    . Associations among magnetic resonance spectroscopy, apparent diffusion coefficients and image-guided histopathology with special attention to radiation necrosis. Neurosurgery 2004: 54; 1111– 19
    PubMedWeb of Science
  54. ↵
    1. Weybright P,
    2. Sundgren PC,
    3. Maly P,
    4. et al
    . Differentiation between brain tumour recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol 2005; 185: 1471– 76
    CrossRefPubMedWeb of Science
  55. ↵
    1. Rock JP,
    2. Hearshen D,
    3. Scarpace L,
    4. et al
    . Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 2002; 51: 912– 19
    CrossRefPubMedWeb of Science
  56. ↵
    1. Zeng QS,
    2. Li CF,
    3. Zhang K,
    4. et al
    . Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J Neurooncol 2007; 84: 63– 69
    CrossRefPubMed
  57. ↵
    1. Kimura T,
    2. Sako K,
    3. Gotoh T,
    4. et al
    . In vivo single voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR Biomed 2001; 14: 339– 49
    CrossRefPubMedWeb of Science
  58. ↵
    1. Kimura T,
    2. Sako K,
    3. Tohyama Y,
    4. et al
    . Diagnosis and treatment of progressive space-occupying radiation necrosis following radiosurgery for brain metastasis: value of proton magnetic resonance spectroscopy. Acta Neurochir 2003; 145: 557– 64
    CrossRefPubMed
  59. ↵
    1. Rutkowski T,
    2. Tarnawski R,
    3. Sokol M,
    4. et al
    . Proton-MR spectroscopy of normal brain tissue before and after postoperative radiotherapy because of primary brain tumors. Int J Radiat Oncol Biol Phys 2003; 56: 1381– 89
    CrossRefPubMedWeb of Science
  60. ↵
    1. Weybright P,
    2. Maly P,
    3. Gomez Hassan D,
    4. et al
    . MR spectroscopy in the evaluation of recurrent contrast enhancing lesions in the posterior fossa after tumor treatment. Neuroradiology 2004; 46: 541– 59
    PubMed
  61. ↵
    1. Bulakbasi N,
    2. Kocaoglu M,
    3. Ors F,
    4. et al
    . Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. AJNR Am J Neuroradiol 2003; 24: 225– 33
    Abstract/FREE Full Text
  62. ↵
    1. Lin A,
    2. Bluml S,
    3. Mamelak AN
    . Efficacy of proton magnetic resonance spectroscopy in clinical decision making for patients with suspected malignant brain tumors. J Neurooncol 1999; 45: 69– 81
    CrossRefPubMed
  63. ↵
    1. Yang D,
    2. Korogi Y,
    3. Sugahara T,
    4. et al
    . Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 2002; 44: 656– 66
    CrossRefPubMed
  64. ↵
    1. Wald LL,
    2. Nelson SJ,
    3. Day MR,
    4. et al
    . Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy. J Neurosurg 1997; 87: 525– 34
    PubMedWeb of Science
  65. ↵
    1. Kinoshita K,
    2. Tada E,
    3. Matsumoto K,
    4. et al
    . Proton MR spectroscopy of delayed cerebral radiation in monkeys and humans after brachytherapy. AJNR Am J Neuroradiol 1997; 18: 1753– 61
    Abstract
  66. ↵
    1. Croteau D,
    2. Scarpace L,
    3. Hearshen D,
    4. et al
    . Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and quantitative histopathological analyses of patients with untreated glioma. Neurosurgery 2001; 49: 823– 29
    CrossRefPubMedWeb of Science
  67. ↵
    1. Lazareff JA,
    2. Gupta RK,
    3. Alger J
    . Variation of post-treatment H-MRSI choline signal intensity in pediatric gliomas. J Neurooncol 1999; 41: 291– 98
    CrossRefPubMed
  68. ↵
    1. McKnight TR,
    2. von dem Busche MH,
    3. Vigneron DB,
    4. et al
    . Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg 2002; 97: 794– 802
    PubMedWeb of Science
  69. ↵
    1. Elias A,
    2. Carlos RC,
    3. Smith E,
    4. et al
    . MR Spectroscopy Using Normalized and Non-Normalized Metabolite Ratios for Differentiating Recurrent Brain Tumor from Radiation Injury. Proceedings of the Radiological Society of North America, Chicago, Ill, November 30-December 5, 2008
  70. ↵
    1. Lin A,
    2. Mamelak A,
    3. Ross BD
    . Effect of MRS on Clinical Decision Making in Brain Tumour Management. Proceedings of the International Society of Magnetic Resonance in Medicine, Denver, Colo, April 1–7, 2000
  71. ↵
    1. Guyatt GH,
    2. Haynes RB,
    3. Jaeschke RZ,
    4. et al
    . Users’ Guides to Medical Literature XXV: evidence-based medicine—principles for applying the Users’ Guides to patient care. Evidence-Based Medicine Working Group. JAMA 2000; 284: 1290– 96
    CrossRefPubMedWeb of Science
  72. ↵
    1. Smith EA,
    2. Carlos RC,
    3. Junck LR,
    4. et al
    . Developing a clinical decision model: use of MR spectroscopy to differentiate between recurrent tumor and radiation change in patients with new contrast enhancing lesions. AJR Am J Roentgenol 2009; 192: W45– 52
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 30 (8)
American Journal of Neuroradiology
Vol. 30, Issue 8
1 Sep 2009
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MR Spectroscopy in Radiation Injury
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
P.C. Sundgren
MR Spectroscopy in Radiation Injury
American Journal of Neuroradiology Sep 2009, 30 (8) 1469-1476; DOI: 10.3174/ajnr.A1580

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MR Spectroscopy in Radiation Injury
P.C. Sundgren
American Journal of Neuroradiology Sep 2009, 30 (8) 1469-1476; DOI: 10.3174/ajnr.A1580
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Other Radiologic and Nuclear Medicine Methods to Discriminate Radiation Injury from Recurrent or Progressive Tumor
    • Effects of Radiation on Normal Brain
    • MR Spectroscopy in Radiation Injury
    • Measurements of Metabolites and Ratio Calculations
    • Need for Prediction Models for Clinical Decision Making
    • Conclusions
    • Acknowledgment
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Differentiation between Radiation Necrosis and Tumor Progression Using Chemical Exchange Saturation Transfer
  • Pseudoprogression and Pseudoresponse: Imaging Challenges in the Assessment of Posttreatment Glioma
  • Crossref (107)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Pseudoprogression and Pseudoresponse: Imaging Challenges in the Assessment of Posttreatment Glioma
    L.C. Hygino da Cruz, I. Rodriguez, R.C. Domingues, E.L. Gasparetto, A.G. Sorensen
    American Journal of Neuroradiology 2011 32 11
  • Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies
    Nishant Verma, Matthew C. Cowperthwaite, Mark G. Burnett, Mia K. Markey
    Neuro-Oncology 2013 15 5
  • Imaging of Brain Tumors: MR Spectroscopy and Metabolic Imaging
    Alena Horská, Peter B. Barker
    Neuroimaging Clinics of North America 2010 20 3
  • Radiation Necrosis in the Brain: Imaging Features and Differentiation from Tumor Recurrence
    Ritu Shah, Surjith Vattoth, Rojymon Jacob, Fathima Fijula Palot Manzil, Janis P. O’Malley, Peyman Borghei, Bhavik N. Patel, Joel K. Curé
    RadioGraphics 2012 32 5
  • Stereotactic radiosurgery for treatment of brain metastases
    Martin Kocher, Andrea Wittig, Marc Dieter Piroth, Harald Treuer, Heinrich Seegenschmiedt, Maximilian Ruge, Anca-Ligia Grosu, Matthias Guckenberger
    Strahlentherapie und Onkologie 2014 190 6
  • Postradiation Imaging Changes in the CNS: How can we Differentiate Between Treatment Effect and Disease Progression?
    Amanda J Walker, Jake Ruzevick, Ashkan A Malayeri, Daniele Rigamonti, Michael Lim, Kristin J Redmond, Lawrence Kleinberg
    Future Oncology 2014 10 7
  • Percent Change of Perfusion Skewness and Kurtosis: A Potential Imaging Biomarker for Early Treatment Response in Patients with Newly Diagnosed Glioblastomas
    Hye Jin Baek, Ho Sung Kim, Namkug Kim, Young Jun Choi, Young Joong Kim
    Radiology 2012 264 3
  • Differentiation between Radiation Necrosis and Tumor Progression Using Chemical Exchange Saturation Transfer
    Hatef Mehrabian, Kimberly L. Desmond, Hany Soliman, Arjun Sahgal, Greg J. Stanisz
    Clinical Cancer Research 2017 23 14
  • Differentiating Radiation-Induced Necrosis from Recurrent Brain Tumor Using MR Perfusion and Spectroscopy: A Meta-Analysis
    Ming-Tsung Chuang, Yi-Sheng Liu, Yi-Shan Tsai, Ying-Chen Chen, Chien-Kuo Wang, Jeroen Hendrikse
    PLOS ONE 2016 11 1
  • Distinguishing True Progression From Radionecrosis After Stereotactic Radiation Therapy for Brain Metastases With Machine Learning and Radiomics
    Luke Peng, Vishwa Parekh, Peng Huang, Doris D. Lin, Khadija Sheikh, Brock Baker, Talia Kirschbaum, Francesca Silvestri, Jessica Son, Adam Robinson, Ellen Huang, Heather Ames, Jimm Grimm, Linda Chen, Colette Shen, Michael Soike, Emory McTyre, Kristin Redmond, Michael Lim, Junghoon Lee, Michael A. Jacobs, Lawrence Kleinberg
    International Journal of Radiation Oncology*Biology*Physics 2018 102 4

More in this TOC Section

  • Mechanisms of Healing in Coiled Intracranial Aneurysms: A Review of the Literature
  • Ultra-High-Field MR Neuroimaging
  • Armies of Pestilence: CNS Infections as Potential Weapons of Mass Destruction
Show more Review Articles

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire