Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Research ArticleFUNCTIONAL

Seizure Frequency Can Alter Brain Connectivity: Evidence from Resting-State fMRI

R.D. Bharath, S. Sinha, R. Panda, K. Raghavendra, L. George, G. Chaitanya, A. Gupta and P. Satishchandra
American Journal of Neuroradiology October 2015, 36 (10) 1890-1898; DOI: https://doi.org/10.3174/ajnr.A4373
R.D. Bharath
aFrom the Departments of Neuroimaging and Interventional Radiology (R.D.B., R.P., L.G., A.G.)
cAdvanced Brain Imaging Facility (R.D.B., R.P.), Cognitive Neuroscience Center, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Sinha
bNeurology (S.S., K.R., G.C., P.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Panda
aFrom the Departments of Neuroimaging and Interventional Radiology (R.D.B., R.P., L.G., A.G.)
cAdvanced Brain Imaging Facility (R.D.B., R.P.), Cognitive Neuroscience Center, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Raghavendra
bNeurology (S.S., K.R., G.C., P.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. George
aFrom the Departments of Neuroimaging and Interventional Radiology (R.D.B., R.P., L.G., A.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Chaitanya
bNeurology (S.S., K.R., G.C., P.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Gupta
aFrom the Departments of Neuroimaging and Interventional Radiology (R.D.B., R.P., L.G., A.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Satishchandra
bNeurology (S.S., K.R., G.C., P.S.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Fig 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig 1.

    Whole-brain cluster-correlation maps of seed-to-voxel–based resting-state functional connectivity (FDR-corrected P < .001) with seed regions in the medial prefrontal cortex (A and B), right anterior prefrontal cortex (C), left anterior prefrontal cortex (D), left primary somatosensory cortex (E), right middle temporal gyrus (F), left angular gyrus (G), left precuneus (H), left posterior entorhinal cortex (I), and right medial temporal gyrus (J). The columns represents the healthy controls (column 1), the infrequent-seizure group (column 2), the frequent-seizure group (column 3), the frequent-seizure group versus healthy controls (column 4), and the frequent-seizure group versus the infrequent-seizure group (column 5). The colors represent the significance of connectivity; red indicates an increase in connectivity, and blue indicates a decrease in connectivity.

  • Fig 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig 2.

    Whole-brain cluster-correlation maps of seed-to-voxel–based resting-state functional connectivity for the PCC seed region (FDR-corrected P < .001). Shown is DMN connectivity using PCC seed at 3 different axial levels: at the level of ventricles in the top row, midbrain in the middle row, and the cerebellum in the bottom row for healthy controls (A), the infrequent-seizure group (B), the frequent-seizure group (C), the infrequent-seizure group versus healthy controls (D), the frequent-seizure group versus healthy controls (E), and the infrequent-seizure group versus the frequent-seizure group (F). The colors represent the significance of connectivity; red indicates an increase in connectivity, and blue indicates a decrease in connectivity.

Tables

  • Figures
    • View popup
    Table 1:

    Demographic and clinical features of 2 groups (with frequent or infrequent seizures) of patients with HWE

    Clinical FeatureFrequent-Seizure Group (>2/mo)Infrequent-Seizure Group (≤2/mo)P Value
    Male/female ratio, n14:413:5.700
    Mean (±SD) age at evaluation, y29.06 ± 9.8628.67 ± 10.78.910
    Mean (±SD) age at onset, y22.61 ± 8.3920.69 ± 10.36.546
    Mean (±SD) duration of illness, y6.56 ± 6.487.39 ± 9.76.546
    HWE attacks per month<.0001
        Mean (±SD)2.61 ± 0.690.62 ± 0.52
        Median (range)2.5 (2–4)0.43 (0.02–1.66)<.0001
    1:1 episodes, n (%)a8 (44.4)1 (5.6).717
    Family history of any type of epilepsy, n (%)6 (33)5 (27).463
    History of febrile convulsion, n10
    Family history of HWE, n (%)4 (22)1 (5.6)
    Self-induction phenomena, n (%)2 (11.1)2 (11.1)
    Abnormal EEG, n02 (11.1)
    Focal abnormalities in EEG, n02
    Mean (±SD) time between last seizure and fMRI, days10.6 ± 7.59.38 ± 6.9.735
    Complex partial seizures, n1210
    Generalized tonic-clonic seizures, n68
    • ↵a Patients who were having seizures every time they took a hot-water bath.

    • View popup
    Table 2:

    Seed-to-voxel–based connectivity results in the frequent-seizure and healthy control groups

    Seed RegionConnectivity RegionP Value (FDR Corrected)Cluster Size (No. of Voxels)β ValueaT Valueb
    Posterior cingulate cortexL angular gyrus (decreased).0003381−0.216.84
    L temporopolar region (decreased).0009325−0.247.11
    Medial prefrontal cortex (decreased).0009247−0.156.14
    L lateral parietal cortex (decreased).00292−0.154.96
    L inferior parietal cortex (decreased).00252−0.134.64
    L superior temporal cortex (decreased).00537−0.215.22
    L primary somatosensory cortexR primary motor cortex (decreased).001336−0.228.70
    L primary motor cortex (decreased).001187−0.176.51
    L superior temporal gyrusL precuneus (decreased).002112−0.115.79
    R dorsal frontal cortex (decreased).00577−0.115.82
    L primary auditory cortexR premotor cortex (decreased).00594−0.176.87
    R dorsal frontal cortexR and L superior temporal gyrus (decreased).005117−0.125.86
    L lateral parietal cortexR cerebellar tonsil (decreased).00543−0.095.13
    Medial prefrontal cortexL and R dorsal posterior cingulate cortex (decreased).005166−0.115.52
    L primary somatosensory cortex (decreased).005137−0.116.19
    R medial temporal gyrusR temporopolar region (increased).0051460.177.96
    R posterior entorhinal cortex (increased).0051080.176.28
    L precuneusL secondary visual cortex (increased).0011210.157.78
    L primary visual cortex (increased).003830.135.49
    • Note:—L indicates left hemisphere; R, right hemisphere.

    • ↵a β values represent Fisher-transformed correlation coefficient values.

    • ↵b T values represent the strength of connectivity between the source seed region and correlated-voxels regions.

    • View popup
    Table 3:

    Seed-to-voxel–based connectivity results in the infrequent-seizure and healthy control groups

    Seed RegionConnectivity RegionP Value (FDR Corrected)Cluster Size (No. of Voxels)β ValueaT Valueb
    L posterior entorhinal cortexL fusiform gyrus (decreased).004140−0.156.73
    L anterior prefrontal cortexL ventral posterior cingulate cortex (increased).0031360.127.34
    L dorsal posterior cingulate cortex (increased).005740.106.17
    R anterior cingulate cortexR posterior superior temporal gyrus (increased).0021720.106.82
    • Note:—L indicates left hemisphere; R, right hemisphere.

    • ↵a β values represent Fisher-transformed correlation coefficient values.

    • ↵b T values represent the strength of connectivity between the source seed region and correlated-voxels regions.

    • View popup
    Table 4:

    Seed-to-voxel–based connectivity results in the frequent- and infrequent-seizure groups

    Seed RegionConnectivity RegionP Value (FDR Corrected)Cluster Size (No. of Voxels)β ValueaT Valueb
    Medial prefrontal cortexPrecuneus (decreased).00004279−0.199.76
    Posterior cingulate cortex (decreased).00004347−0.255.72
    R anterior prefrontal cortexR dorsal frontal cortex (decreased).005284−0.279.17
    R middle temporal gyrus (decreased).005147−0.186.13
    L anterior prefrontal cortexL middle temporal gyrus (decreased).00592−0.115.57
    Posterior cingulate cortex (decreased).005110−0.105.43
    L pyramis (decreased).005122−0.146.02
    L primary somatosensory cortexR premotor cortex (decreased).0001192−0.269.31
    L premotor cortex (decreased).002148−0.188.66
    L angular gyrusL superior temporal gyrus (decreased).002108−0.116.63
    Anterior cingulateL piriform cortex (decreased).00556−0.115.39
    L lateral parietal corticesPrecuneus (decreased).0006309−0.188.17
    L somatosensory association area (decreased).003164−0.137.96
    Posterior cingulate cortexL angular gyrus (decreased).00006321−0.177.84
    L inferior parietal cortex (decreased).0009191−0.166.52
    L thalamusR somatosensory association cortex (decreased).00978−0.114.67
    L posterior and anterior entorhinal cortexR primary auditory cortex (increased).0051120.105.34
    L primary auditory cortex (increased).005930.115.71
    • Note:—L indicates left hemisphere; R, right hemisphere.

    • ↵a β values represent Fisher-transformed correlation coefficient values.

    • ↵b T values represent the strength of connectivity between the source seed region and correlated-voxels regions.

PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 36 (10)
American Journal of Neuroradiology
Vol. 36, Issue 10
1 Oct 2015
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Seizure Frequency Can Alter Brain Connectivity: Evidence from Resting-State fMRI
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
R.D. Bharath, S. Sinha, R. Panda, K. Raghavendra, L. George, G. Chaitanya, A. Gupta, P. Satishchandra
Seizure Frequency Can Alter Brain Connectivity: Evidence from Resting-State fMRI
American Journal of Neuroradiology Oct 2015, 36 (10) 1890-1898; DOI: 10.3174/ajnr.A4373

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Seizure Frequency Can Alter Brain Connectivity: Evidence from Resting-State fMRI
R.D. Bharath, S. Sinha, R. Panda, K. Raghavendra, L. George, G. Chaitanya, A. Gupta, P. Satishchandra
American Journal of Neuroradiology Oct 2015, 36 (10) 1890-1898; DOI: 10.3174/ajnr.A4373
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Improved Seizure Onset-Zone Lateralization in Temporal Lobe Epilepsy using 7T Resting-State fMRI: A Direct Comparison with 3T
  • Atypical intrinsic neural timescales in temporal lobe epilepsy
  • Functional Network Connectivity Imprint In Febrile Seizures
  • Thalamic deep brain stimulation as a paradigm to reduce consciousness: implications for cortico-striatal dynamics, absence epilepsy and consciousness studies
  • Crossref (22)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Differences in functional connectivity profiles as a predictor of response to anterior thalamic nucleus deep brain stimulation for epilepsy: a hypothesis for the mechanism of action and a potential biomarker for outcomes
    Erik H. Middlebrooks, Sanjeet S. Grewal, Matthew Stead, Brian N. Lundstrom, Gregory A. Worrell, Jamie J. Van Gompel
    Neurosurgical Focus 2018 45 2
  • Recovery of resting brain connectivity ensuing mild traumatic brain injury
    Rose D. Bharath, Ashok Munivenkatappa, Suril Gohel, Rajanikant Panda, Jitender Saini, Jamuna Rajeswaran, Dhaval Shukla, Indira D. Bhagavatula, Bharat B. Biswal
    Frontiers in Human Neuroscience 2015 9
  • Regional cortical thickness changes accompanying generalized tonic-clonic seizures
    Jennifer A. Ogren, Raghav Tripathi, Paul M. Macey, Rajesh Kumar, John M. Stern, Dawn S. Eliashiv, Luke A. Allen, Beate Diehl, Jerome Engel, M.R. Sandhya Rani, Samden D. Lhatoo, Ronald M. Harper
    NeuroImage: Clinical 2018 20
  • Functional Activation Patterns of Deep Brain Stimulation of the Anterior Nucleus of the Thalamus
    Erik H. Middlebrooks, Chen Lin, Lela Okromelidze, Chun-Qiang Lu, William O. Tatum, Robert E. Wharen, Sanjeet S. Grewal
    World Neurosurgery 2020 136
  • Relationship Between Seizure Frequency and Functional Abnormalities in Limbic Network of Medial Temporal Lobe Epilepsy
    Hang Joon Jo, Daniel L. Kenney-Jung, Irena Balzekas, Kirk M. Welker, David T. Jones, Paul E. Croarkin, Eduardo E. Benarroch, Gregory A. Worrell
    Frontiers in Neurology 2019 10
  • Patient‐specific structural connectivity informs outcomes of responsive neurostimulation for temporal lobe epilepsy
    Chantel M. Charlebois, Daria Nesterovich Anderson, Kara A. Johnson, Brian J. Philip, Tyler S. Davis, Blake J. Newman, Angela Y. Peters, Amir M. Arain, Alan D. Dorval, John D. Rolston, Christopher R. Butson
    Epilepsia 2022 63 8
  • Predicting the antiepileptic drug response by brain connectivity in newly diagnosed focal epilepsy
    Kang Min Park, Kyoo Ho Cho, Ho-Joon Lee, Kyoung Heo, Byung In Lee, Sung Eun Kim
    Journal of Neurology 2020 267 4
  • Thalamic deep brain stimulation paradigm to reduce consciousness: Cortico-striatal dynamics implicated in mechanisms of consciousness
    Michelle J. Redinbaugh, Mohsen Afrasiabi, Jessica M. Phillips, Niranjan A. Kambi, Sounak Mohanta, Aeyal Raz, Yuri B. Saalmann, Megan A. K. Peters
    PLOS Computational Biology 2022 18 7
  • Effects of Neuromodulation on Excitatory–Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure
    Scott Rich, Michal Zochowski, Victoria Booth
    Journal of Nonlinear Science 2020 30 5
  • Seizure Control and Memory Impairment Are Related to Disrupted Brain Functional Integration in Temporal Lobe Epilepsy
    Chang-hyun Park, Yun Seo Choi, A-Reum Jung, Hwa-Kyoung Chung, Hyeon Jin Kim, Jeong Hyun Yoo, Hyang Woon Lee
    The Journal of Neuropsychiatry and Clinical Neurosciences 2017 29 4

More in this TOC Section

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire