Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Research ArticleFunctional

Segmentation of the Globus Pallidus Internus Using Probabilistic Diffusion Tractography for Deep Brain Stimulation Targeting in Parkinson Disease

E.H. Middlebrooks, I.S. Tuna, S.S. Grewal, L. Almeida, M.G. Heckman, E.R. Lesser, K.D. Foote, M.S. Okun and V.M. Holanda
American Journal of Neuroradiology June 2018, 39 (6) 1127-1134; DOI: https://doi.org/10.3174/ajnr.A5641
E.H. Middlebrooks
aFrom the Departments of Radiology (E.H.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.H. Middlebrooks
I.S. Tuna
dDepartments of Radiology (I.S.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for I.S. Tuna
S.S. Grewal
bNeurosurgery (S.S.G.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.S. Grewal
L. Almeida
eNeurology (L.A., M.S.O.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Almeida
M.G. Heckman
cDivision of Biomedical Statistics and Informatics (M.G.H., E.R.L.), Mayo Clinic, Jacksonville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.G. Heckman
E.R. Lesser
cDivision of Biomedical Statistics and Informatics (M.G.H., E.R.L.), Mayo Clinic, Jacksonville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.R. Lesser
K.D. Foote
fNeurosurgery (K.D.F.), University of Florida, Gainesville, Florida
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K.D. Foote
M.S. Okun
eNeurology (L.A., M.S.O.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.S. Okun
V.M. Holanda
gCenter of Neurology and Neurosurgery Associates (V.M.H.), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V.M. Holanda
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Obeso JA,
    2. Olanow CW,
    3. Rodriguez-Oroz MC, et al
    ; Deep-Brain Stimulation for Parkinson's Disease Study Group. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N Engl J Med 2001;345:956–63 doi:10.1056/NEJMoa000827 pmid:11575287
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Okun MS,
    2. Fernandez HH,
    3. Wu SS, et al
    . Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 2009;65:586–95 doi:10.1002/ana.21596 pmid:19288469
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Odekerken VJ,
    2. van Laar T,
    3. Staal MJ, et al
    . Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson's disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 2013;12:37–44 doi:10.1016/S1474-4422(12)70264-8 pmid:23168021
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Sudhyadhom A,
    2. Haq IU,
    3. Foote KD, et al
    . A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage 2009;47(Suppl 2):T44–52 doi:10.1016/j.neuroimage.2009.04.018 pmid:19362595
    CrossRefPubMed
  5. 5.↵
    1. Alho AT,
    2. Hamani C,
    3. Alho EJ, et al
    . Magnetic resonance diffusion tensor imaging for the pedunculopontine nucleus: proof of concept and histological correlation. Brain Struct Funct 2017;222:2547–58 doi:10.1007/s00429-016-1356-0 pmid:28283747
    CrossRefPubMed
  6. 6.↵
    1. Sajonz BE,
    2. Amtage F,
    3. Reinacher PC, et al
    . Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT): study protocol of a randomized controlled feasibility trial. JMIR Res Protoc 2016;5:e244 doi:10.2196/resprot.6885 pmid:28007690
    CrossRefPubMed
  7. 7.↵
    1. Pouratian N,
    2. Zheng Z,
    3. Bari AA, et al
    . Multi-institutional evaluation of deep brain stimulation targeting using probabilistic connectivity-based thalamic segmentation. J Neurosurg 2011;115:995–1004 doi:10.3171/2011.7.JNS11250 pmid:21854118
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Horn A,
    2. Reich M,
    3. Vorwerk J, et al
    . Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol 2017;82:67–78 doi:10.1002/ana.24974 pmid:28586141
    CrossRefPubMed
  9. 9.↵
    1. Behrens TE,
    2. Berg HJ,
    3. Jbabdi S, et al
    . Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 2007;34:144–55 doi:10.1016/j.neuroimage.2006.09.018 pmid:17070705
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Behrens TE,
    2. Johansen-Berg H,
    3. Woolrich MW, et al
    . Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 2003;6:750–57 doi:10.1038/nn1075 pmid:12808459
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Traynor C,
    2. Heckemann RA,
    3. Hammers A, et al
    . Reproducibility of thalamic segmentation based on probabilistic tractography. Neuroimage 2010;52:69–85 doi:10.1016/j.neuroimage.2010.04.024 pmid:20398772
    CrossRefPubMed
  12. 12.↵
    1. Elias WJ,
    2. Zheng ZA,
    3. Domer P, et al
    . Validation of connectivity-based thalamic segmentation with direct electrophysiologic recordings from human sensory thalamus. Neuroimage 2012;59:2025–34 doi:10.1016/j.neuroimage.2011.10.049 pmid:22036683
    CrossRefPubMed
  13. 13.↵
    1. da Silva NM,
    2. Ahmadi SA,
    3. Tafula SN, et al
    . A diffusion-based connectivity map of the GPi for optimised stereotactic targeting in DBS. Neuroimage 2017;144:83–91 doi:10.1016/j.neuroimage.2016.06.018 pmid:27646126
    CrossRefPubMed
  14. 14.↵
    1. Parent A,
    2. Hazrati LN
    . Functional anatomy of the basal ganglia, I: the cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 1995;20:91–127 doi:10.1016/0165-0173(94)00007-C pmid:7711769
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Tisch S,
    2. Zrinzo L,
    3. Limousin P, et al
    . Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia. J Neurol Neurosurg Psychiatry 2007;78:1314–19 doi:10.1136/jnnp.2006.109694 pmid:17442760
    Abstract/FREE Full Text
  16. 16.↵
    1. Prodoehl J,
    2. Yu H,
    3. Little DM, et al
    . Region of interest template for the human basal ganglia: comparing EPI and standardized space approaches. Neuroimage 2008;39:956–65 doi:10.1016/j.neuroimage.2007.09.027 pmid:17988895
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Keuken MC,
    2. Forstmann BU
    . A probabilistic atlas of the basal ganglia using 7 T MRI. Data Brief 2015;4:577–82 doi:10.1016/j.dib.2015.07.028 pmid:26322322
    CrossRefPubMed
  18. 18.↵
    1. Mayka MA,
    2. Corcos DM,
    3. Leurgans SE, et al
    . Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 2006;31:1453–74 doi:10.1016/j.neuroimage.2006.02.004 pmid:16571375
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Makris N,
    2. Goldstein JM,
    3. Kennedy D, et al
    . Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res 2006;83:155–71 doi:10.1016/j.schres.2005.11.020 pmid:16448806
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Frazier JA,
    2. Chiu S,
    3. Breeze JL, et al
    . Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry 2005;162:1256–65 doi:10.1176/appi.ajp.162.7.1256 pmid:15994707
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Desikan RS,
    2. Ségonne F,
    3. Fischl B, et al
    . An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968–80 doi:10.1016/j.neuroimage.2006.01.021 pmid:16530430
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Goldstein JM,
    2. Seidman LJ,
    3. Makris N, et al
    . Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol Psychiatry 2007;61:935–45 pmid:17046727
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Avants BB,
    2. Epstein CL,
    3. Grossman M, et al
    . Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 2008;12:26–41 doi:10.1016/j.media.2007.06.004 pmid:17659998
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Fonov V,
    2. Evans AC,
    3. Botteron K, et al
    ; Brain Development Cooperative Group. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 2011;54:313–27 doi:10.1016/j.neuroimage.2010.07.033 pmid:20656036
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Horn A,
    2. Kühn AA
    . Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. Neuroimage 2015;107:127–35 doi:10.1016/j.neuroimage.2014.12.002 pmid:25498389
    CrossRefPubMed
  26. 26.↵
    1. Wichmann T,
    2. Dostrovsky JO
    . Pathological basal ganglia activity in movement disorders. Neuroscience 2011;198:232–44 doi:10.1016/j.neuroscience.2011.06.048 pmid:21723919
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. McCairn KW,
    2. Iriki A,
    3. Isoda M
    . Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders. J Neurophysiol 2015;114:2090–104 doi:10.1152/jn.00223.2015 pmid:26180116
    CrossRefPubMed
  28. 28.↵
    1. Yagmurlu K,
    2. Vlasak AL,
    3. Rhoton AL Jr.
    . Three-dimensional topographic fiber tract anatomy of the cerebrum. Neurosurgery 2015;11(Suppl 2):274–305; discussion 305 doi:10.1227/NEU.0000000000000704 pmid:25950888
    CrossRefPubMed
  29. 29.↵
    1. Baron MS,
    2. Sidibé M,
    3. DeLong MR, et al
    . Course of motor and associative pallidothalamic projections in monkeys. J Comp Neurol 2001;429:490–501 pmid:11116233
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Severin CM,
    2. Young PA,
    3. Massapust LC
    . Pallidothalamic projections in the rat. J Comp Neurol 1976;166:491–502 doi:10.1002/cne.901660409 pmid:1270619
    CrossRefPubMed
  31. 31.↵
    1. Gallay MN,
    2. Jeanmonod D,
    3. Liu J, et al
    . Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct 2008;212:443–63 doi:10.1007/s00429-007-0170-0 pmid:18193279
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Hashimoto T,
    2. Elder CM,
    3. Okun MS, et al
    . Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 2003;23:1916–23 pmid:12629196
    Abstract/FREE Full Text
  33. 33.↵
    1. Delong MR,
    2. Georgopoulos AP,
    3. Crutcher MD, et al
    . Functional organization of the basal ganglia: contributions of single-cell recording studies. Ciba Found Symp 1984;107:64–82 pmid:6389041
    PubMed
  34. 34.↵
    1. Plantinga BR,
    2. Roebroeck A,
    3. Kemper VG, et al
    . Ultra-high field MRI post mortem structural connectivity of the human subthalamic nucleus, substantia nigra, and globus pallidus. Front Neuroanat 2016;10:66 doi:10.3389/fnana.2016.00066 pmid:27378864
    CrossRefPubMed
  35. 35.↵
    1. Perez-Costas E,
    2. Melendez-Ferro M,
    3. Roberts RC
    . Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem 2010;113:287–302 doi:10.1111/j.1471-4159.2010.06604.x pmid:20089137
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Martinez-Gonzalez C,
    2. Bolam JP,
    3. Mena-Segovia J
    . Topographical organization of the pedunculopontine nucleus. Front Neuroanat 2011;5:22 doi:10.3389/fnana.2011.00022 pmid:21503154
    CrossRefPubMed
  37. 37.↵
    1. Shink E,
    2. Sidibé M,
    3. Smith Y
    . Efferent connections of the internal globus pallidus in the squirrel monkey, II: topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J Comp Neurol 1997;382:348–63 pmid:9183698
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Zhang J,
    2. Wang ZI,
    3. Baker KB, et al
    . Effect of globus pallidus internus stimulation on neuronal activity in the pedunculopontine tegmental nucleus in the primate model of Parkinson's disease. Exp Neurol 2012;233:575–80 doi:10.1016/j.expneurol.2011.07.007 pmid:21821025
    CrossRefPubMed
  39. 39.↵
    1. Xiao Y,
    2. Fonov V,
    3. Chakravarty MM, et al
    . A dataset of multi-contrast population-averaged brain MRI atlases of a Parkinson's disease cohort. Data Brief 2017;12:370–79 doi:10.1016/j.dib.2017.04.013 pmid:28491942
    CrossRefPubMed
  40. 40.↵
    1. Detante O,
    2. Vercueil L,
    3. Thobois S, et al
    . Globus pallidus internus stimulation in primary generalized dystonia: a H215O PET study. Brain 2004;127:1899–908 doi:10.1093/brain/awh213 pmid:15231585
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Naito A,
    2. Kita H
    . The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res 1994;653:251–57 doi:10.1016/0006-8993(94)90397-2 pmid:7526961
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Rozanski VE,
    2. Vollmar C,
    3. Cunha JP, et al
    . Connectivity patterns of pallidal DBS electrodes in focal dystonia: a diffusion tensor tractography study. Neuroimage 2014;84:435–42 doi:10.1016/j.neuroimage.2013.09.009 pmid:24045076
    CrossRefPubMed
  43. 43.↵
    1. Milardi D,
    2. Gaeta M,
    3. Marino S, et al
    . Basal ganglia network by constrained spherical deconvolution: a possible cortico-pallidal pathway? Mov Disord 2015;30:342–49 doi:10.1002/mds.25995 pmid:25156805
    CrossRefPubMed
  44. 44.↵
    1. Akkal D,
    2. Dum RP,
    3. Strick PL
    . Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci 2007;27:10659–73 doi:10.1523/JNEUROSCI.3134-07.2007 pmid:17913900
    Abstract/FREE Full Text
  45. 45.↵
    1. Hoover JE,
    2. Strick PL
    . Multiple output channels in the basal ganglia. Science 1993;259:819–21 doi:10.1126/science.7679223 pmid:7679223
    Abstract/FREE Full Text
  46. 46.↵
    1. Brücke C,
    2. Kempf F,
    3. Kupsch A, et al
    . Movement-related synchronization of gamma activity is lateralized in patients with dystonia. Eur J Neurosci 2008;27:2322–29 doi:10.1111/j.1460-9568.2008.06203.x pmid:18430031
    CrossRefPubMed
  47. 47.↵
    1. Tsang EW,
    2. Hamani C,
    3. Moro E, et al
    . Movement related potentials and oscillatory activities in the human internal globus pallidus during voluntary movements. J Neurol Neurosurg Psychiatry 2012;83:91–97 doi:10.1136/jnnp.2011.243857 pmid:21700729
    Abstract/FREE Full Text
  48. 48.↵
    1. Talakoub O,
    2. Neagu B,
    3. Udupa K, et al
    . Time-course of coherence in the human basal ganglia during voluntary movements. Sci Rep 2016;6:34930 doi:10.1038/srep34930 pmid:27725721
    CrossRefPubMed
  49. 49.↵
    1. Brunenberg EJL,
    2. Moeskops P,
    3. Backes WH, et al
    . Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PLoS One 2012;7:e39061 doi:10.1371/journal.pone.0039061 pmid:22768059
    CrossRefPubMed
  50. 50.↵
    1. Lambert C,
    2. Zrinzo L,
    3. Nagy Z, et al
    . Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 2012;60:83–94 doi:10.1016/j.neuroimage.2011.11.082 pmid:22173294
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Vanegas-Arroyave N,
    2. Lauro PM,
    3. Huang L, et al
    . Tractography patterns of subthalamic nucleus deep brain stimulation. Brain 2016;139:1200–10 doi:10.1093/brain/aww020 pmid:26921616
    CrossRefPubMed
  52. 52.↵
    1. Dietz J,
    2. Noecker AM,
    3. McIntyre CC, et al
    . Stimulation region within the globus pallidus does not affect verbal fluency performance. Brain Stimul 2013;6:248–53 doi:10.1016/j.brs.2012.05.011 pmid:22766102
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 39 (6)
American Journal of Neuroradiology
Vol. 39, Issue 6
1 Jun 2018
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Segmentation of the Globus Pallidus Internus Using Probabilistic Diffusion Tractography for Deep Brain Stimulation Targeting in Parkinson Disease
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
E.H. Middlebrooks, I.S. Tuna, S.S. Grewal, L. Almeida, M.G. Heckman, E.R. Lesser, K.D. Foote, M.S. Okun, V.M. Holanda
Segmentation of the Globus Pallidus Internus Using Probabilistic Diffusion Tractography for Deep Brain Stimulation Targeting in Parkinson Disease
American Journal of Neuroradiology Jun 2018, 39 (6) 1127-1134; DOI: 10.3174/ajnr.A5641

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Segmentation of the Globus Pallidus Internus Using Probabilistic Diffusion Tractography for Deep Brain Stimulation Targeting in Parkinson Disease
E.H. Middlebrooks, I.S. Tuna, S.S. Grewal, L. Almeida, M.G. Heckman, E.R. Lesser, K.D. Foote, M.S. Okun, V.M. Holanda
American Journal of Neuroradiology Jun 2018, 39 (6) 1127-1134; DOI: 10.3174/ajnr.A5641
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Linking Profiles of Pathway Activation with Clinical Motor Improvements - a Retrospective Computational Study
  • Ventral Intermediate Nucleus structural connectivity-derived segmentation: anatomical reliability and variability
  • Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics
  • Toward a unified connectomic target for deep brain stimulation in obsessive-compulsive disorder
  • Functional and Structural Connectivity Patterns Associated with Clinical Outcomes in Deep Brain Stimulation of the Globus Pallidus Internus for Generalized Dystonia
  • Crossref (35)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • The Cortico-Basal Ganglia-Cerebellar Network: Past, Present and Future Perspectives
    Demetrio Milardi, Angelo Quartarone, Alessia Bramanti, Giuseppe Anastasi, Salvatore Bertino, Gianpaolo Antonio Basile, Piero Buonasera, Giorgia Pilone, Giuseppe Celeste, Giuseppina Rizzo, Daniele Bruschetta, Alberto Cacciola
    Frontiers in Systems Neuroscience 2019 13
  • Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics
    E.H. Middlebrooks, R.A. Domingo, T. Vivas-Buitrago, L. Okromelidze, T. Tsuboi, J.K. Wong, R.S. Eisinger, L. Almeida, M.R. Burns, A. Horn, R.J. Uitti, R.E. Wharen, V.M. Holanda, S.S. Grewal
    American Journal of Neuroradiology 2020 41 9
  • Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated
    Gordon Duffley, Daria Nesterovich Anderson, Johannes Vorwerk, Alan D Dorval, Christopher R Butson
    Journal of Neural Engineering 2019 16 6
  • The impact of modern-day neuroimaging on the field of deep brain stimulation
    Andreas Horn
    Current Opinion in Neurology 2019 32 4
  • Structural connectivity–based segmentation of the thalamus and prediction of tremor improvement following thalamic deep brain stimulation of the ventral intermediate nucleus
    Erik H. Middlebrooks, Ibrahim S. Tuna, Leonardo Almeida, Sanjeet S. Grewal, Joshua Wong, Michael G. Heckman, Elizabeth R. Lesser, Markus Bredel, Kelly D. Foote, Michael S. Okun, Vanessa M. Holanda
    NeuroImage: Clinical 2018 20
  • Beneficial nonmotor effects of subthalamic and pallidal neurostimulation in Parkinson’s disease
    Haidar S. Dafsari, Maria Gabriela dos Santos Ghilardi, Veerle Visser-Vandewalle, Alexandra Rizos, Keyoumars Ashkan, Monty Silverdale, Julian Evans, Raquel C.R. Martinez, Rubens G. Cury, Stefanie T. Jost, Michael T. Barbe, Gereon R. Fink, Angelo Antonini, K. Ray-Chaudhuri, Pablo Martinez-Martin, Erich Talamoni Fonoff, Lars Timmermann
    Brain Stimulation 2020 13 6
  • A Comprehensive Review of Brain Connectomics and Imaging to Improve Deep Brain Stimulation Outcomes
    Joshua K. Wong, Erik H. Middlebrooks, Sanjeet S. Grewal, Leonardo Almeida, Christopher W. Hess, Michael S. Okun
    Movement Disorders 2020 35 5
  • Structural connectivity‐based topography of the human globus pallidus: Implications for therapeutic targeting in movement disorders
    Alberto Cacciola, Demetrio Milardi, Salvatore Bertino, Gianpaolo Antonio Basile, Alessandro Calamuneri, Gaetana Chillemi, Giuseppina Rizzo, Giuseppe Anastasi, Angelo Quartarone
    Movement Disorders 2019 34 7
  • Functional and Structural Connectivity Patterns Associated with Clinical Outcomes in Deep Brain Stimulation of the Globus Pallidus Internus for Generalized Dystonia
    L. Okromelidze, T. Tsuboi, R.S. Eisinger, M.R. Burns, M. Charbel, M. Rana, S.S. Grewal, C.-Q. Lu, L. Almeida, K.D. Foote, M.S. Okun, E.H. Middlebrooks
    American Journal of Neuroradiology 2020 41 3
  • Globus Pallidus Internus (GPi) Deep Brain Stimulation for Parkinson’s Disease: Expert Review and Commentary
    Ka Loong Kelvin Au, Joshua K. Wong, Takashi Tsuboi, Robert S. Eisinger, Kathryn Moore, Janine Lemos Melo Lobo Jofili Lopes, Marshall T. Holland, Vanessa M. Holanda, Zhongxing Peng-Chen, Addie Patterson, Kelly D. Foote, Adolfo Ramirez-Zamora, Michael S. Okun, Leonardo Almeida
    Neurology and Therapy 2021 10 1

More in this TOC Section

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire