Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Review ArticleAdult Brain
Open Access

Artificial Intelligence and Acute Stroke Imaging

J.E. Soun, D.S. Chow, M. Nagamine, R.S. Takhtawala, C.G. Filippi, W. Yu and P.D. Chang
American Journal of Neuroradiology January 2021, 42 (1) 2-11; DOI: https://doi.org/10.3174/ajnr.A6883
J.E. Soun
aFrom the Departments of Radiological Sciences (J.E.S., D.S.C., P.D.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.E. Soun
D.S. Chow
aFrom the Departments of Radiological Sciences (J.E.S., D.S.C., P.D.C.)
cCenter for Artificial Intelligence in Diagnostic Medicine (D.S.C., R.S.T., P.D.C.), University of California, Irvine, Orange, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D.S. Chow
M. Nagamine
bNeurology (M.N., W.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Nagamine
R.S. Takhtawala
cCenter for Artificial Intelligence in Diagnostic Medicine (D.S.C., R.S.T., P.D.C.), University of California, Irvine, Orange, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.S. Takhtawala
C.G. Filippi
dDepartment of Radiology (C.G.F.), Northwell Health, Lenox Hill Hospital, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.G. Filippi
W. Yu
bNeurology (M.N., W.Y.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for W. Yu
P.D. Chang
aFrom the Departments of Radiological Sciences (J.E.S., D.S.C., P.D.C.)
cCenter for Artificial Intelligence in Diagnostic Medicine (D.S.C., R.S.T., P.D.C.), University of California, Irvine, Orange, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.D. Chang
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Ovbiagele B,
    2. Nguyen-Huynh MN
    . Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics 2011;8:319–29 doi:10.1007/s13311-011-0053-1 pmid:21691873
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Donkor ES
    . Stroke in the 21(st) century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat 2018;2018:3238165 doi:10.1155/2018/3238165 pmid:30598741
    CrossRefPubMed
  3. 3.↵
    1. Boehme AK,
    2. Esenwa C,
    3. Elkind MSV
    . Stroke risk factors, genetics, and prevention. Circ Res 2017;120:472–95 doi:10.1161/CIRCRESAHA.116.308398 pmid:28154098
    Abstract/FREE Full Text
  4. 4.↵
    1. Lee EJ,
    2. Kim YH,
    3. Kim N, et al
    . Deep into the brain: artificial intelligence in stroke imaging. J Stroke 2017;19:277–85 doi:10.5853/jos.2017.02054 pmid:29037014
    CrossRefPubMed
  5. 5.↵
    1. Goodfellow I,
    2. Bengio Y,
    3. Courville A
    . Deep Learning. The MIT Press 2016
  6. 6.↵
    1. Saeys Y,
    2. Inza I,
    3. Larrañaga P
    . A review of feature selection techniques in bioinformatics. Bioinformatics 2007;23:2507–17 doi:10.1093/bioinformatics/btm344 pmid:17720704
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Dreiseitl S,
    2. Ohno-Machado L
    . Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 2002;35:352–59 doi:10.1016/S1532-0464(03)00034-0 pmid:12968784
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Wang S,
    2. Summers RM
    . Machine learning and radiology. Med Image Anal 2012;16:933–51 doi:10.1016/j.media.2012.02.005 pmid:22465077
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Jordan MI,
    2. Mitchell TM
    . Machine learning: trends, perspectives, and prospects. Science 2015;349:255–60 doi:10.1126/science.aaa8415 pmid:26185243
    Abstract/FREE Full Text
  10. 10.↵
    1. He K,
    2. Zhang X,
    3. Ren S, et al
    . Deep residual learning for image recognition. arXiv:1512:03385;10 Dec 2015;1–12
  11. 11.↵
    1. Krizhevsky A,
    2. Sutskever I,
    3. Hinton G
    . Imagenet classification with deep convolutional neural networks. Proc Advances in Neural Information Processing Systems 2012;1090–98
  12. 12.↵
    1. Krizhevsky A,
    2. Sutskever I,
    3. Hinton GE
    . Imagenet classification with deep convolutional neural networks. Neural information processing systems. Stateline 2012;1097–1105
  13. 13.↵
    1. Setio AA,
    2. Ciompi F,
    3. Litjens G, et al
    . Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 2016;35:1160–69 doi:10.1109/TMI.2016.2536809 pmid:26955024
    CrossRefPubMed
  14. 14.↵
    1. Roth HR,
    2. Lu L,
    3. Liu J, et al
    . Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 2016;35:1170–81 doi:10.1109/TMI.2015.2482920 pmid:26441412
    CrossRefPubMed
  15. 15.↵
    1. Qi D,
    2. Hao C,
    3. Lequan Y, et al
    . Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 2016;35:1182–95 doi:10.1109/TMI.2016.2528129 pmid:26886975
    CrossRefPubMed
  16. 16.↵
    1. Zou KH,
    2. Warfield SK,
    3. Bharatha A, et al
    . Statistical validation of image segmentation quality based on a spatial overlap index1: scientific reports. Acad Radiol 2004;11:178–89 doi:10.1016/S1076-6332(03)00671-8
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Yamashita R,
    2. Nishio M,
    3. Do RKG, et al
    . Convolutional neural networks: an overview and application in radiology. Insights Imaging 2018;9:611–29 doi:10.1007/s13244-018-0639-9 pmid:29934920
    CrossRefPubMed
  18. 18.↵
    1. Murray NM,
    2. Unberath M,
    3. Hager GD, et al
    . Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. J Neurointerv Surg 2020;12:156–64 doi:10.1136/neurintsurg-2019-015135
    Abstract/FREE Full Text
  19. 19.↵
    1. Liew S-L,
    2. Anglin JM,
    3. Banks NW, et al
    . A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci Data 2018;5:180011 doi:10.1038/sdata.2018.11 pmid:29461514
    CrossRefPubMed
  20. 20.↵
    1. Chilamkurthy S,
    2. Ghosh R,
    3. Tanamala S, et al
    . Development and validation of deep learning algorithms for detection of critical findings in head CT scans. arXiv :1803:05854;30 March 2018; 1–18
  21. 21.↵
    1. Flanders AE,
    2. Prevedello LM,
    3. Shih G, et al
    . Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiol Art Int 2020;2:e190211 doi:10.1148/ryai.2020190211
    CrossRef
  22. 22.↵
    1. Winzeck S,
    2. Hakim A,
    3. McKinley R, et al
    . ISLES 2016 and 2017—benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front Neurol 2018;9:679 doi:10.3389/fneur.2018.00679 pmid:30271370
    CrossRefPubMed
  23. 23.↵
    1. Clèrigues A,
    2. Valverde S,
    3. Bernal J, et al
    . Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks. Comput Biol Med 2019;115:103487 doi:10.1016/j.compbiomed.2019.103487 pmid:31629272
    CrossRefPubMed
  24. 24.↵
    American Society of Functional Neuroradiology. ASFNR Ai challenge. https://aichallenge.asfnr.org. Accessed July 5, 2020
  25. 25.↵
    1. Nogueira RG,
    2. Jadhav AP,
    3. Haussen DC, et al
    . Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018;378:11–21 doi:10.1056/NEJMoa1706442 pmid:29129157
    CrossRefPubMed
  26. 26.↵
    1. Saver JL,
    2. Goyal M,
    3. Bonafe A, et al
    . Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 2015;372:2285–95 doi:10.1056/NEJMoa1415061 pmid:25882376
    CrossRefPubMed
  27. 27.↵
    1. Albers GW,
    2. Marks MP,
    3. Kemp S, et al
    . Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018;378:708–18 doi:10.1056/NEJMoa1713973 pmid:29364767
    CrossRefPubMed
  28. 28.↵
    1. Campbell BCV,
    2. Mitchell PJ,
    3. Kleinig TJ, et al
    . Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015;372:1009–18 doi:10.1056/NEJMoa1414792 pmid:25671797
    CrossRefPubMed
  29. 29.↵
    1. Wismüller A,
    2. Stockmaster L
    . A prospective randomized clinical trial for measuring radiology study reporting time on artificial Intelligence-based detection of intracranial hemorrhage in emergent care head CT. arXiv :2002:12515; 28 Feb 2020; 1–7
  30. 30.↵
    1. Tang FH,
    2. Ng DK,
    3. Chow DH
    . An image feature approach for computer-aided detection of ischemic stroke. Comput Biol Med 2011;41:529–36 doi:10.1016/j.compbiomed.2011.05.001 pmid:21605853
    CrossRefPubMed
  31. 31.↵
    1. Abedi V,
    2. Goyal N,
    3. Tsivgoulis G, et al
    . Novel screening tool for stroke using artificial neural network. Stroke 2017;48:1678–81 doi:10.1161/STROKEAHA.117.017033 pmid:28438906
    Abstract/FREE Full Text
  32. 32.↵
    1. Chen L,
    2. Bentley P,
    3. Rueckert D
    . Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. NeuroImage Clin 2017;15:633–43 doi:10.1016/j.nicl.2017.06.016 pmid:28664034
    CrossRefPubMed
  33. 33.↵
    1. Guerrero R,
    2. Qin C,
    3. Oktay O, et al
    . White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage Clin 2018;17:918–34 doi:10.1016/j.nicl.2017.12.022 pmid:29527496
    CrossRefPubMed
  34. 34.↵
    1. Oman O,
    2. Makela T,
    3. Salli E, et al
    . 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur Radiol Exp 2019;3:8 doi:10.1186/s41747-019-0085-6 pmid:30758694
    CrossRefPubMed
  35. 35.↵
    1. Kasasbeh AS,
    2. Christensen S,
    3. Parsons MW, et al
    . Artificial neural network computer tomography perfusion prediction of ischemic core. Stroke 2019;50:1578–81 doi:10.1161/STROKEAHA.118.022649 pmid:31092162
    CrossRefPubMed
  36. 36.↵
    1. Qiu W,
    2. Kuang H,
    3. Teleg E, et al
    . Machine learning for detecting early infarction in acute stroke with non–contrast-enhanced CT. Radiology 2020;294:638–44 doi:10.1148/radiol.2020191193 pmid:31990267
    CrossRefPubMed
  37. 37.↵
    1. Takahashi N,
    2. Lee Y,
    3. Tsai D-Y, et al
    . An automated detection method for the MCA dot sign of acute stroke in unenhanced CT. Radiol Phys Technol 2014;7:79–88 doi:10.1007/s12194-013-0234-1 pmid:23996520
    CrossRefPubMed
  38. 38.↵
    1. Chen Z,
    2. Zhang R,
    3. Xu F, et al
    . Novel prehospital prediction model of large vessel occlusion using artificial neural network. Front Aging Neurosci 2018;10:181 doi:10.3389/fnagi.2018.00181 pmid:29997494
    CrossRefPubMed
  39. 39.↵
    1. Chatterjee A,
    2. Somayaji NR,
    3. Kabakis IM
    . Abstract WMP16: artificial intelligence detection of cerebrovascular large vessel occlusion—nine month, 650 patient evaluation of the diagnostic accuracy and performance of the Viz.ai LVO algorithm. Stroke 2019;50:AWMP16 doi:10.1161/str.50.suppl_1.WMP16
    CrossRef
  40. 40.↵
    1. Barreira C,
    2. Bouslama M,
    3. Lim J, et al
    . E-108 Aladin study: automated large artery occlusion detection in stroke imaging study—a multicenter analysis. J Neurointerv Surg 2018;10:A101–02 doi:10.1136/neurointsurg-2018-SNIS.184
    CrossRef
  41. 41.↵
    1. Goyal M,
    2. Demchuk AM,
    3. Menon BK, et al
    . Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015;372:1019–30 doi:10.1056/NEJMoa1414905 pmid:25671798
    CrossRefPubMed
  42. 42.↵
    1. Jovin TG,
    2. Chamorro A,
    3. Cobo E, et al
    . Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 2015;372:2296–2306 doi:10.1056/NEJMoa1503780 pmid:25882510
    CrossRefPubMed
  43. 43.↵
    1. Nagel S,
    2. Sinha D,
    3. Day D, et al
    . e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. Int J Stroke 2017;12:615–22 doi:10.1177/1747493016681020 pmid:27899743
    CrossRefPubMed
  44. 44.↵
    1. Guberina N,
    2. Dietrich U,
    3. Radbruch A, et al
    . Detection of early infarction signs with machine learning-based diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine. Neuroradiology 2018;60:889–901 doi:10.1007/s00234-018-2066-5 pmid:30066278
    CrossRefPubMed
  45. 45.↵
    1. Kuang H,
    2. Najm M,
    3. Chakraborty D, et al
    . Automated ASPECTS on noncontrast CT scans in patients with acute ischemic stroke using machine learning. AJNR Am J Neuroradiol 2019;40:33–38 doi:10.3174/ajnr.A5889 pmid:30498017
    Abstract/FREE Full Text
  46. 46.↵
    1. Maegerlein C,
    2. Fischer J,
    3. Monch S, et al
    . Automated calculation of the Alberta Stroke Program Early CT score: feasibility and reliability. Radiology 2019;291:141–48 doi:10.1148/radiol.2019181228 pmid:30720400
    CrossRefPubMed
  47. 47.↵
    1. Albers GW,
    2. Wald MJ,
    3. Mlynash M, et al
    . Automated calculation of Alberta Stroke Program Early CT score: validation in patients with large hemispheric infarct. Stroke 2019;50:3277–79 doi:10.1161/STROKEAHA.119.026430 pmid:31500555
    CrossRefPubMed
  48. 48.↵
    1. Grunwald IQ,
    2. Kulikovski J,
    3. Reith W, et al
    . Collateral automation for triage in stroke: evaluating automated scoring of collaterals in acute stroke on computed tomography scans. Cerebrovasc Dis 2019;47:217–22 doi:10.1159/000500076 pmid:31216543
    CrossRefPubMed
  49. 49.↵
    1. Wang K,
    2. Shou Q,
    3. Ma SJ, et al
    . Deep learning detection of penumbral tissue on arterial spin labeling in stroke. Stroke 2020;51:489–97 doi:10.1161/STROKEAHA.119.027457 pmid:31884904
    CrossRefPubMed
  50. 50.↵
    1. Ho KC,
    2. Speier W,
    3. Zhang H, et al
    . A machine learning approach for classifying ischemic stroke onset time from imaging. IEEE Trans Med Imaging 2019;38:1666–76 doi:10.1109/TMI.2019.2901445 pmid:30802855
    CrossRefPubMed
  51. 51.↵
    1. Lee H,
    2. Lee E-J,
    3. Ham S, et al
    . Machine learning approach to identify stroke within 4.5 hours. Stroke 2020;51:860–66 doi:10.1161/STROKEAHA.119.027611 pmid:31987014
    CrossRefPubMed
  52. 52.↵
    1. Wu O,
    2. Koroshetz WJ,
    3. Østergaard L, et al
    . Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke 2001;32:933–42 doi:10.1161/01.str.32.4.933 pmid:11283394
    Abstract/FREE Full Text
  53. 53.↵
    1. Stier N,
    2. Vincent N,
    3. Liebeskind D, et al
    . Deep learning of tissue fate features in acute ischemic stroke. Proceedings (IEEE Int Conf Bioinformatics Biomed) 2015;2015:1316–21 doi:10.1109/BIBM.2015.7359869 pmid:28919983
    CrossRefPubMed
  54. 54.↵
    1. Nielsen A,
    2. Hansen MB,
    3. Tietze A, et al
    . Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 2018;49:1394–1401 doi:10.1161/STROKEAHA.117.019740 pmid:29720437
    Abstract/FREE Full Text
  55. 55.↵
    1. Ho KC,
    2. Scalzo F,
    3. Sarma K, et al
    . Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images. J Med Imag 2019;6:1 doi:10.1117/1.JMI.6.2.026001 pmid:31131293
    CrossRefPubMed
  56. 56.↵
    1. Yu Y,
    2. Xie Y,
    3. Thamm T, et al
    . Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging. JAMA Netw Open 2020;3:e200772 doi:10.1001/jamanetworkopen.2020.0772 pmid:32163165
    CrossRefPubMed
  57. 57.↵
    1. Pfaff J,
    2. Herweh C,
    3. Schieber S, et al
    . e-ASPECTS correlates with and is predictive of outcome after mechanical thrombectomy. AJNR Am J Neuroradiol 2017;38:1594–99 doi:10.3174/ajnr.A5236 pmid:28596195
    Abstract/FREE Full Text
  58. 58.↵
    1. Tang T-Y,
    2. Jiao Y,
    3. Cui Y, et al
    . Development and validation of a penumbra-based predictive model for thrombolysis outcome in acute ischemic stroke patients. EBioMedicine 2018;35:251–59 doi:10.1016/j.ebiom.2018.07.028 pmid:30146341
    CrossRefPubMed
  59. 59.↵
    1. Xie Y,
    2. Jiang B,
    3. Gong E, et al
    . Use of gradient boosting machine learning to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information. AJR Am J Roentgenol 2019;212:44–51 doi:10.2214/AJR.18.20260 pmid:30354266
    CrossRefPubMed
  60. 60.↵
    1. Nishi H,
    2. Oishi N,
    3. Ishii A, et al
    . Predicting clinical outcomes of large vessel occlusion before mechanical thrombectomy using machine learning. Stroke 2019;50:2379–88 doi:10.1161/STROKEAHA.119.025411 pmid:31409267
    CrossRefPubMed
  61. 61.↵
    1. Bacchi S,
    2. Zerner T,
    3. Oakden-Rayner L, et al
    . Deep learning in the prediction of ischaemic stroke thrombolysis functional outcomes: a pilot study. Acad Radiol 2020;27:e19–23 doi:10.1016/j.acra.2019.03.015 pmid:31053480
    CrossRefPubMed
  62. 62.↵
    1. Yu Y,
    2. Guo D,
    3. Lou M, et al
    . Prediction of hemorrhagic transformation severity in acute stroke from source perfusion MRI. IEEE Trans Biomed Eng 2018;65:2058–65 doi:10.1109/TBME.2017.2783241 pmid:29989941
    CrossRefPubMed
  63. 63.↵
    1. Desai V,
    2. Flanders A,
    3. Lakhani P
    . Application of deep learning in neuroradiology: automated detection of basal ganglia hemorrhage using 2D-convolutional neural networks. arXiv :1710:03823;10 Oct 2017;1–7
  64. 64.↵
    1. Chilamkurthy S,
    2. Ghosh R,
    3. Tanamala S, et al
    . Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018;392:2388–96 doi:10.1016/S0140-6736(18)31645-3 pmid:30318264
    CrossRefPubMed
  65. 65.↵
    1. Arbabshirani MR,
    2. Fornwalt BK,
    3. Mongelluzzo GJ, et al
    . Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digital Med 2018;1:9 doi:10.1038/s41746-017-0015-z pmid:31304294
    CrossRefPubMed
  66. 66.↵
    1. Lee H,
    2. Yune S,
    3. Mansouri M, et al
    . An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019;3:173–82 doi:10.1038/s41551-018-0324-9 pmid:30948806
    CrossRefPubMed
  67. 67.↵
    1. Chang PD,
    2. Kuoy E,
    3. Grinband J, et al
    . Hybrid 3D/2D convolutional neural network for hemorrhage evaluation on head CT. AJNR Am J Neuroradiol 2018;39:1609–16 doi:10.3174/ajnr.A5742 pmid:30049723
    Abstract/FREE Full Text
  68. 68.↵
    1. Kuo W,
    2. Häne C,
    3. Mukherjee P, et al
    . Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proc Natl Acad Sci USA 2019;116:22737–45 doi:10.1073/pnas.1908021116 pmid:31636195
    Abstract/FREE Full Text
  69. 69.↵
    1. Liu J,
    2. Xu H,
    3. Chen Q, et al
    . Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine. EBioMedicine 2019;43:454–59 doi:10.1016/j.ebiom.2019.04.040 pmid:31060901
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (1)
American Journal of Neuroradiology
Vol. 42, Issue 1
1 Jan 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Artificial Intelligence and Acute Stroke Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J.E. Soun, D.S. Chow, M. Nagamine, R.S. Takhtawala, C.G. Filippi, W. Yu, P.D. Chang
Artificial Intelligence and Acute Stroke Imaging
American Journal of Neuroradiology Jan 2021, 42 (1) 2-11; DOI: 10.3174/ajnr.A6883

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Artificial Intelligence and Acute Stroke Imaging
J.E. Soun, D.S. Chow, M. Nagamine, R.S. Takhtawala, C.G. Filippi, W. Yu, P.D. Chang
American Journal of Neuroradiology Jan 2021, 42 (1) 2-11; DOI: 10.3174/ajnr.A6883
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Overview of AI
    • Evaluation of AI Performance
    • AI Platforms in Stroke and Hemorrhage
    • AI Evaluation of Ischemic Stroke
    • AI Evaluation of Hemorrhage
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Real time artificial intelligence assisted carotid artery stenting: a preliminary experience
  • Intra-arterial contrast administration: a confounding appearance on stroke CT imaging
  • Deep Learning and Transfer Learning for Brain Tumor Detection and Classification
  • Artificial Intelligence in the Future Landscape of Pediatric Neuroradiology: Opportunities and Challenges
  • The Impact of Artificial Intelligence on Large Vessel Occlusion Stroke Detection and Management: A Systematic Review Meta-analysis
  • Critical Appraisal of Artificial Intelligence-Enabled Imaging Tools Using the Levels of Evidence System
  • Critical Appraisal of Artificial Intelligence-Enabled Imaging Tools Using the Levels of Evidence System
  • Impact of RapidAI mobile application on treatment times in patients with large vessel occlusion
  • Crossref (161)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging
    Reabal Najjar
    Diagnostics 2023 13 17
  • The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century
    Shiva Maleki Varnosfaderani, Mohamad Forouzanfar
    Bioengineering 2024 11 4
  • Artificial intelligence in emergency radiology: A review of applications and possibilities
    Benjamin D. Katzman, Christian B. van der Pol, Philippe Soyer, Michael N. Patlas
    Diagnostic and Interventional Imaging 2023 104 1
  • Influence of artificial intelligence on the work design of emergency department clinicians a systematic literature review
    Albert Boonstra, Mente Laven
    BMC Health Services Research 2022 22 1
  • Accuracy of Automated Computer-Aided Diagnosis for Stroke Imaging: A Critical Evaluation of Current Evidence
    Joanna M. Wardlaw, Grant Mair, Rüdiger von Kummer, Michelle C. Williams, Wenwen Li, Amos J. Storkey, Emanuel Trucco, David S. Liebeskind, Andrew Farrall, Philip M. Bath, Philip White
    Stroke 2022 53 7
  • Artificial Intelligence in Emergency Radiology: Where Are We Going?
    Michaela Cellina, Maurizio Cè, Giovanni Irmici, Velio Ascenti, Elena Caloro, Lorenzo Bianchi, Giuseppe Pellegrino, Natascha D’Amico, Sergio Papa, Gianpaolo Carrafiello
    Diagnostics 2022 12 12
  • Cardiovascular/Stroke Risk Stratification in Parkinson’s Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review
    Jasjit S. Suri, Sudip Paul, Maheshrao A. Maindarkar, Anudeep Puvvula, Sanjay Saxena, Luca Saba, Monika Turk, John R. Laird, Narendra N. Khanna, Klaudija Viskovic, Inder M. Singh, Mannudeep Kalra, Padukode R. Krishnan, Amer Johri, Kosmas I. Paraskevas
    Metabolites 2022 12 4
  • Leveraging artificial intelligence in ischemic stroke imaging
    Omid Shafaat, Joshua D. Bernstock, Amir Shafaat, Vivek S. Yedavalli, Galal Elsayed, Saksham Gupta, Ehsan Sotoudeh, Haris I. Sair, David M. Yousem, Houman Sotoudeh
    Journal of Neuroradiology 2022 49 4
  • Automated detection and segmentation of intracranial hemorrhage suspect hyperdensities in non-contrast-enhanced CT scans of acute stroke patients
    N. Schmitt, Y. Mokli, C. S. Weyland, S. Gerry, C. Herweh, P. A. Ringleb, S. Nagel
    European Radiology 2022 32 4
  • Cognitive Motor Dissociation: Gap Analysis and Future Directions
    Jan Claassen, Daniel Kondziella, Ayham Alkhachroum, Michael Diringer, Brian L. Edlow, Joseph J. Fins, Olivia Gosseries, Yousef Hannawi, Benjamin Rohaut, Caroline Schnakers, Robert D. Stevens, Aurore Thibaut, Martin Monti
    Neurocritical Care 2024 40 1

More in this TOC Section

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire