Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Research ArticleAdult Brain
Open Access

MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status

C.G.B. Yogananda, B.R. Shah, S.S. Nalawade, G.K. Murugesan, F.F. Yu, M.C. Pinho, B.C. Wagner, B. Mickey, T.R. Patel, B. Fei, A.J. Madhuranthakam and J.A. Maldjian
American Journal of Neuroradiology May 2021, 42 (5) 845-852; DOI: https://doi.org/10.3174/ajnr.A7029
C.G.B. Yogananda
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.G.B. Yogananda
B.R. Shah
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.R. Shah
S.S. Nalawade
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.S. Nalawade
G.K. Murugesan
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.K. Murugesan
F.F. Yu
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F.F. Yu
M.C. Pinho
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.C. Pinho
B.C. Wagner
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B.C. Wagner
B. Mickey
bDepartment of Neurological Surgery (B.M., T.R.P.), University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Mickey
T.R. Patel
bDepartment of Neurological Surgery (B.M., T.R.P.), University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.R. Patel
B. Fei
cDepartment of Bioengineering (B.F.), University of Texas at Dallas, Richardson, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Fei
A.J. Madhuranthakam
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.J. Madhuranthakam
J.A. Maldjian
aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.A. Maldjian
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

Article Information

vol. 42 no. 5 845-852
DOI 
https://doi.org/10.3174/ajnr.A7029
PubMed 
33664111

Published By 
American Journal of Neuroradiology
Print ISSN 
0195-6108
Online ISSN 
1936-959X
History 
  • Received June 24, 2020
  • Accepted after revision November 21, 2020
  • Published online May 12, 2021.

Article Versions

  • Latest version (March 4, 2021 - 08:56).
  • You are viewing the most recent version of this article.
Copyright & Usage 
© 2021 by American Journal of Neuroradiology Indicates open access to non-subscribers at www.ajnr.org

Author Information

  1. C.G.B. Yoganandaa,
  2. B.R. Shaha,
  3. S.S. Nalawadea,
  4. G.K. Murugesana,
  5. F.F. Yua,
  6. M.C. Pinhoa,
  7. B.C. Wagnera,
  8. B. Mickeyb,
  9. T.R. Patelb,
  10. B. Feic,
  11. A.J. Madhuranthakama and
  12. J.A. Maldjiana
  1. aFrom the Advanced Neuroscience Imaging Research Lab (C.G.B.Y., B.R.S., S.S.N., G.K.M., F.F.Y., M.C.P., B.C.W., A.J.M., J.A.M.), Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
  2. bDepartment of Neurological Surgery (B.M., T.R.P.), University of Texas Southwestern Medical Center, Dallas, Texas
  3. cDepartment of Bioengineering (B.F.), University of Texas at Dallas, Richardson, Texas
  1. Please address correspondence to Joseph A. Maldjian, MD, Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9178; e-mail: joseph.maldjian{at}utsouthwestern.edu
View Full Text

Funding

  • NIH/NCI

    U01CA207091

Altmetrics

Cited By...

  • 66 Citations
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma
    Jiefeng Luo, Mika Pan, Ke Mo, Yingwei Mao, Donghua Zou
    Seminars in Cancer Biology 2023 91
  • Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study
    Jionghui Gu, Tong Tong, Dong Xu, Fang Cheng, Chengyu Fang, Chang He, Jing Wang, Baohua Wang, Xin Yang, Kun Wang, Jie Tian, Tian'an Jiang
    Cancer 2023 129 3
  • Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors
    Zhongxiao Li, Yuwei Cong, Xin Chen, Jiping Qi, Jingxian Sun, Tao Yan, He Yang, Junsi Liu, Enzhou Lu, Lixiang Wang, Jiafeng Li, Hong Hu, Cheng Zhang, Quan Yang, Jiawei Yao, Penglei Yao, Qiuyi Jiang, Wenwu Liu, Jiangning Song, Lawrence Carin, Yupeng Chen, Shiguang Zhao, Xin Gao
    iScience 2023 26 1
  • Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: A neuro-oncological investigation
    Sanjay Saxena, Biswajit Jena, Bibhabasu Mohapatra, Neha Gupta, Manudeep Kalra, Mario Scartozzi, Luca Saba, Jasjit S. Suri
    Computers in Biology and Medicine 2023 153
  • Validation of MRI-Based Models to Predict MGMT Promoter Methylation in Gliomas: BraTS 2021 Radiogenomics Challenge
    Byung-Hoon Kim, Hyeonhoon Lee, Kyu Sung Choi, Ju Gang Nam, Chul-Kee Park, Sung-Hye Park, Jin Wook Chung, Seung Hong Choi
    Cancers 2022 14 19
  • Artificial intelligence-driven biomedical genomics
    Kairui Guo, Mengjia Wu, Zelia Soo, Yue Yang, Yi Zhang, Qian Zhang, Hua Lin, Mark Grosser, Deon Venter, Guangquan Zhang, Jie Lu
    Knowledge-Based Systems 2023 279
  • Ultrasound radiomics in personalized breast management: Current status and future prospects
    Jionghui Gu, Tian'an Jiang
    Frontiers in Oncology 2022 12
  • A Comparison of Three Different Deep Learning-Based Models to Predict the MGMT Promoter Methylation Status in Glioblastoma Using Brain MRI
    Shahriar Faghani, Bardia Khosravi, Mana Moassefi, Gian Marco Conte, Bradley J. Erickson
    Journal of Digital Imaging 2023 36 3
  • Prediction of O-6-methylguanine-DNA methyltransferase and overall survival of the patients suffering from glioblastoma using MRI-based hybrid radiomics signatures in machine and deep learning framework
    Sanjay Saxena, Aaditya Agrawal, Prasad Dash, Biswajit Jena, Narendra N. Khanna, Sudip Paul, Mannudeep M. Kalra, Klaudija Viskovic, Mostafa M. Fouda, Luca Saba, Jasjit S. Suri
    Neural Computing and Applications 2023 35 18
  • Fully Automated MR Based Virtual Biopsy of Cerebral Gliomas
    Johannes Haubold, René Hosch, Vicky Parmar, Martin Glas, Nika Guberina, Onofrio Antonio Catalano, Daniela Pierscianek, Karsten Wrede, Cornelius Deuschl, Michael Forsting, Felix Nensa, Nils Flaschel, Lale Umutlu
    Cancers 2021 13 24
  • Artificial intelligence in the radiomic analysis of glioblastomas: A review, taxonomy, and perspective
    Ming Zhu, Sijia Li, Yu Kuang, Virginia B. Hill, Amy B. Heimberger, Lijie Zhai, Shengjie Zhai
    Frontiers in Oncology 2022 12
  • Applications of Artificial Intelligence Based on Medical Imaging in Glioma: Current State and Future Challenges
    Jiaona Xu, Yuting Meng, Kefan Qiu, Win Topatana, Shijie Li, Chao Wei, Tianwen Chen, Mingyu Chen, Zhongxiang Ding, Guozhong Niu
    Frontiers in Oncology 2022 12
  • MGMT promoter methylation status prediction using MRI scans? An extensive experimental evaluation of deep learning models
    Numan Saeed, Muhammad Ridzuan, Hussain Alasmawi, Ikboljon Sobirov, Mohammad Yaqub
    Medical Image Analysis 2023 90
  • Multiparametric MRI-Based Radiomics Model for Predicting H3 K27M Mutant Status in Diffuse Midline Glioma: A Comparative Study Across Different Sequences and Machine Learning Techniques
    Wei Guo, Dejun She, Zhen Xing, Xiang Lin, Feng Wang, Yang Song, Dairong Cao
    Frontiers in Oncology 2022 12
  • A multitask classification framework based on vision transformer for predicting molecular expressions of glioma
    Qian Xu, Qian Qian Xu, Nian Shi, Li Na Dong, Hong Zhu, Kai Xu
    European Journal of Radiology 2022 157
  • A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma
    Liqiang Zhang, Rui Wang, Jueni Gao, Yi Tang, Xinyi Xu, Yubo Kan, Xu Cao, Zhipeng Wen, Zhi Liu, Shaoguo Cui, Yongmei Li
    European Radiology 2023 34 1
  • An Attentive Multi-Modal CNN for Brain Tumor Radiogenomic Classification
    Ruyi Qu, Zhifeng Xiao
    Information 2022 13 3
  • Association of partial T2-FLAIR mismatch sign and isocitrate dehydrogenase mutation in WHO grade 4 gliomas: results from the ReSPOND consortium
    Matthew D. Lee, Sohil H. Patel, Suyash Mohan, Hamed Akbari, Spyridon Bakas, MacLean P. Nasrallah, Evan Calabrese, Jeffrey Rudie, Javier Villanueva-Meyer, Pamela LaMontagne, Daniel S. Marcus, Rivka R. Colen, Carmen Balana, Yoon Seong Choi, Chaitra Badve, Jill S. Barnholtz-Sloan, Andrew E. Sloan, Thomas C. Booth, Joshua D. Palmer, Adam P. Dicker, Adam E. Flanders, Wenyin Shi, Brent Griffith, Laila M. Poisson, Arnab Chakravarti, Abhishek Mahajan, Susan Chang, Daniel Orringer, Christos Davatzikos, Rajan Jain, Stephen J. Bagley, Michel Bilello, Steven Brem, Ujjwal Baid, Arati S. Desai, Robert A. Lustig, Elizabeth Mamourian, Anahita Fathi Kazerooni, Jose A. Garcia, Donald M. O’Rourke, Zev A. Binder, Mikhail Milchenko, Arash Nazeri, Aris Sotiras, Murat Ak, Jaume Capellades, Josep Puig, Sung Soo Ahn, Jong Hee Chang, Seung-Koo Lee, Yae Won Park, Vachan Vadmal, Kristin A. Waite, Sree Gongala, Alysha Chelliah, Golestan Karami, Gregory S. Alexander, Ayesha S. Ali, Spencer Liem, Joseph Lombardo, Gaurav Shukla, Muhammad Sharif, Lisa R. Rogers, William Taylor, Santiago Cepeda, Aikaterini Kotrotsou, Hassan Fathallah-Shaykh, Orazio Santo Santonocito, Anna Luisa Di Stefano, Aaron M. Rulseh, Yuji Matsumoto, Kimberley Alexander, Laveniya Satgunaseelan, Benedikt Wiestler, Rao P. Gullapalli, Elias R. Melhem, Graeme F. Woodworth, Peter I. Kamel, Victor M. Perez-Garcia, Alekos Vamvakas, Yiannis Tsougos, Pablo Valdes, Pallavi Tiwari, Mariam Aboian
    Neuroradiology 2023 65 9
  • Comprehensive Genomic Subtyping of Glioma Using Semi-Supervised Multi-Task Deep Learning on Multimodal MRI
    Priyanka Tupe-Waghmare, Piyush Malpure, Ketan Kotecha, Manish Beniwal, Vani Santosh, Jitender Saini, Madhura Ingalhalikar
    IEEE Access 2021 9
  • Swin Transformer Improves the IDH Mutation Status Prediction of Gliomas Free of MRI-Based Tumor Segmentation
    Jiangfen Wu, Qian Xu, Yiqing Shen, Weidao Chen, Kai Xu, Xian-Rong Qi
    Journal of Clinical Medicine 2022 11 15
  • A Multimodal Knowledge-Based Deep Learning Approach for MGMT Promoter Methylation Identification
    Salvatore Capuozzo, Michela Gravina, Gianluca Gatta, Stefano Marrone, Carlo Sansone
    Journal of Imaging 2022 8 12
  • Advances in Neuro-Oncological Imaging: An Update on Diagnostic Approach to Brain Tumors
    Paniz Sabeghi, Paniz Zarand, Sina Zargham, Batis Golestany, Arya Shariat, Myles Chang, Evan Yang, Priya Rajagopalan, Daniel Phung, Ali Gholamrezanezhad
    Cancers 2024 16 3
  • Survey of deep learning techniques for disease prediction based on omics data
    Xindi Yu, Shusen Zhou, Hailin Zou, Qingjun Wang, Chanjuan Liu, Mujun Zang, Tong Liu
    Human Gene 2023 35
  • Deep learning in precision medicine and focus on glioma
    Yihao Liu, Minghua Wu
    Bioengineering & Translational Medicine 2023 8 5
  • Brain Tumor Radiogenomic Classification of O6-Methylguanine-DNA Methyltransferase Promoter Methylation in Malignant Gliomas-Based Transfer Learning
    Houneida Sakly, Mourad Said, Jayne Seekins, Ramzi Guetari, Naoufel Kraiem, Mehrez Marzougui
    Cancer Control 2023 30
  • Potential roles of transformers in brain tumor diagnosis and treatment
    Yu‐Long Lan, Shuang Zou, Bing Qin, Xiangdong Zhu
    Brain‐X 2023 1 2
  • Identifying key factors for predicting O6-Methylguanine-DNA methyltransferase status in adult patients with diffuse glioma: a multimodal analysis of demographics, radiomics, and MRI by variable Vision Transformer
    Takuma Usuzaki, Kengo Takahashi, Ryusei Inamori, Yohei Morishita, Takashi Shizukuishi, Hidenobu Takagi, Mami Ishikuro, Taku Obara, Kei Takase
    Neuroradiology 2024 66 5
  • MRI-Based Deep Learning Tools for MGMT Promoter Methylation Detection: A Thorough Evaluation
    Lucas Robinet, Aurore Siegfried, Margaux Roques, Ahmad Berjaoui, Elizabeth Cohen-Jonathan Moyal
    Cancers 2023 15 8
  • Preoperative prediction of MGMT promoter methylation in glioblastoma based on multiregional and multi-sequence MRI radiomics analysis
    Lanqing Li, Feng Xiao, Shouchao Wang, Shengyu Kuang, Zhiqiang Li, Yahua Zhong, Dan Xu, Yuxiang Cai, Sirui Li, Jun Chen, Yaou Liu, Junjie Li, Huan Li, Haibo Xu
    Scientific Reports 2024 14 1
  • Imaging of GBM in the Age of Molecular Markers and MRI Guided Adaptive Radiation Therapy
    Salah Dajani, Virginia B. Hill, John A. Kalapurakal, Craig M. Horbinski, Eric G. Nesbit, Sean Sachdev, Amulya Yalamanchili, Tarita O. Thomas
    Journal of Clinical Medicine 2022 11 19
  • AI in spotting high-risk characteristics of medical imaging and molecular pathology
    Chong Zhang, Jionghui Gu, Yangyang Zhu, Zheling Meng, Tong Tong, Dongyang Li, Zhenyu Liu, Yang Du, Kun Wang, Jie Tian
    Precision Clinical Medicine 2021 4 4
  • Molecular Biomarkers and Recent Liquid Biopsy Testing Progress: A Review of the Application of Biosensors for the Diagnosis of Gliomas
    Yuanbin Wu, Xuning Wang, Meng Zhang, Dongdong Wu
    Molecules 2023 28 15
  • Voxel level dense prediction of acute stroke territory in DWI using deep learning segmentation models and image enhancement strategies
    Ilker Ozgur Koska, M. Alper Selver, Fazil Gelal, Muhsin Engin Uluc, Yusuf Kenan Çetinoğlu, Nursel Yurttutan, Mehmet Serindere, Oğuz Dicle
    Japanese Journal of Radiology 2024 42 9
  • Assessment of MGMT promoter methylation status in glioblastoma using deep learning features from multi-sequence MRI of intratumoral and peritumoral regions
    Xuan Yu, Jing Zhou, Yaping Wu, Yan Bai, Nan Meng, Qingxia Wu, Shuting Jin, Huanhuan Liu, Panlong Li, Meiyun Wang
    Cancer Imaging 2024 24 1
  • Brain tumor IDH, 1p/19q, and MGMT molecular classification using MRI-based deep learning: an initial study on the effect of motion and motion correction
    Sahil S. Nalawade, Fang F. Yu, Chandan Ganesh Bangalore Yogananda, Gowtham K. Murugesan, Bhavya R. Shah, Marco C. Pinho, Benjamin C. Wagner, Yin Xi, Bruce Mickey, Toral R. Patel, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian
    Journal of Medical Imaging 2022 9 01
  • Implications of Advances in Studies of O6-Methylguanine-DNA- Methyltransferase for Tumor Prognosis and Treatment
    Yuexia Chen, Wei Qu, Jianhong Tu, Hongyan Qi
    Frontiers in Bioscience-Landmark 2023 28 9
  • Relevance maps: A weakly supervised segmentation method for 3D brain tumours in MRIs
    Sajith Rajapaksa, Farzad Khalvati
    Frontiers in Radiology 2022 2
  • A review of deep learning for brain tumor analysis in MRI
    Felix J. Dorfner, Jay B. Patel, Jayashree Kalpathy-Cramer, Elizabeth R. Gerstner, Christopher P. Bridge
    npj Precision Oncology 2025 9 1
  • Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
    Timothy Sum Hon Mun, Simon Doran, Paul Huang, Christina Messiou, Matthew Blackledge
    2022 12962
  • Conventional MRI-Derived Biomarkers of Adult-Type Diffuse Glioma Molecular Subtypes: A Comprehensive Review
    Paola Feraco, Rossana Franciosi, Lorena Picori, Federica Scalorbi, Cesare Gagliardo
    Biomedicines 2022 10 10
  • Diffusion-tensor imaging and dynamic susceptibility contrast MRIs improve radiomics-based machine learning model of MGMT promoter methylation status in glioblastomas
    Tran Nguyen Tuan Minh, Viet Huan Le, Nguyen Quoc Khanh Le
    Biomedical Signal Processing and Control 2023 86
  • Imaging of Brain Tumors
    Justin T. Jordan, Elizabeth R. Gerstner
    CONTINUUM: Lifelong Learning in Neurology 2023 29 1
  • Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
    D. M. Lang, J. C. Peeken, S. E. Combs, J. J. Wilkens, S. Bartzsch
    2022 12962
  • Deciphering glioblastoma: Unveiling imaging markers for predicting MGMT promoter methylation status
    Eric Hexem, Taha Abd-ElSalam Ashraf Taha, Yaseen Dhemesh, Mohammad Aneel Baqar, Ayman Nada
    Current Problems in Cancer 2025 54
  • Imaging Genomics of Glioma Revisited: Analytic Methods to Understand Spatial and Temporal Heterogeneity
    Cymon N. Kersch, Minjae Kim, Jared Stoller, Ramon F. Barajas, Ji Eun Park
    American Journal of Neuroradiology 2024 45 5
  • A deep learning model for differentiating paediatric intracranial germ cell tumour subtypes and predicting survival with MRI: a multicentre prospective study
    Yanong Li, Zhizheng Zhuo, Jinyuan Weng, Sven Haller, Harrison X. Bai, Bo Li, Xing Liu, Mingwang Zhu, Zheng Wang, Jane Li, Xiaoguang Qiu, Yaou Liu
    BMC Medicine 2024 22 1
  • Application of A U-Net for Map-like Segmentation and Classification of Discontinuous Fibrosis Distribution in Gd-EOB-DTPA-Enhanced Liver MRI
    Quirin David Strotzer, Hinrich Winther, Kirsten Utpatel, Alexander Scheiter, Claudia Fellner, Michael Christian Doppler, Kristina Imeen Ringe, Florian Raab, Michael Haimerl, Wibke Uller, Christian Stroszczynski, Lukas Luerken, Niklas Verloh
    Diagnostics 2022 12 8
  • Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries
    Aleksandr Emchinov
    2022 12963
  • Computational pathology-based weakly supervised prediction model for MGMT promoter methylation status in glioblastoma
    Yongqi He, Ling Duan, Gehong Dong, Feng Chen, Wenbin Li
    Frontiers in Neurology 2024 15
  • DeepDepth: Prediction of O(6)-methylguanine-DNA methyltransferase genotype in glioblastoma patients using multimodal representation learning based on deep feature fusion
    B. Keerthiveena, Mohammad Tufail Sheikh, Hariprasad Kodamana, Anurag S. Rathore
    Neural Computing and Applications 2024 36 19
  • The data behind the image—Deep learning and its potential impact in neuro-oncological imaging
    Birgit Ertl-Wagner, Farzad Khalvati
    Neuro-Oncology 2022 24 2
  • A systematic review and meta-analysis of deep learning and radiomics in predicting MGMT promoter methylation status in glioblastoma: Efficacy, reliability, and clinical implications
    Yu Chen, Yuehui Liao, Panfei Li, Wei Jin, Jingwan Fang, Junwei Huang, Yaning Feng, Changxiong Xie, Ruipeng Li, Qun Jin, Xiaobo Lai
    Displays 2025 89
  • AI-guided virtual biopsy: Automated differentiation of cerebral gliomas from other benign and malignant MRI findings using deep learning
    Mathias Holtkamp, Vicky Parmar, René Hosch, Luca Salhöfer, Hanna Styczen, Yan Li, Marcel Opitz, Martin Glas, Nika Guberina, Karsten Wrede, Cornelius Deuschl, Michael Forsting, Felix Nensa, Lale Umutlu, Johannes Haubold
    Neuro-Oncology Advances 2025 7 1
  • Advances of artificial intelligence in clinical application and scientific research of neuro-oncology: Current knowledge and future perspectives
    Yankun Zhan, Yanying Hao, Xiang Wang, Duancheng Guo
    Critical Reviews in Oncology/Hematology 2025 209
  • Brain Tumor MRI Image Segmentation Using Deep Learning Techniques
    Chandan Ganesh Bangalore Yogananda, Bhavya R. Shah, Fang F. Yu, Sahil S. Nalawade, James Holcomb, Divya Reddy, Benjamin C. Wagner, Marco C. Pinho, Bruce Mickey, Toral R. Patel, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian
    2022
  • Computational Neurosurgery
    Santiago Cepeda
    2024 1462
  • Deep learning classification of MGMT status of glioblastomas using multiparametric MRI with a novel domain knowledge augmented mask fusion approach
    İlker Özgür Koska, Çağan Koska
    Scientific Reports 2025 15 1
  • Diagnostic Accuracy of Deep Learning Models in Predicting Glioma Molecular Markers: A Systematic Review and Meta-Analysis
    Somayeh Farahani, Marjaneh Hejazi, Sahar Moradizeyveh, Antonio Di Ieva, Emad Fatemizadeh, Sidong Liu
    Diagnostics 2025 15 7
  • Evolution of Molecular Biomarkers and Precision Molecular Therapeutic Strategies in Glioblastoma
    Maria A. Jacome, Qiong Wu, Yolanda Piña, Arnold B. Etame
    Cancers 2024 16 21
  • Expression of Concern: “MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status” [Am. J. Neuroradiol. 42 (2021) 845-852]
    American Journal of Neuroradiology 2022 43 11
  • From Voxel to Gene: A Scoping Review on MRI Radiogenomics’ Artificial Intelligence Predictions in Adult Gliomas and Glioblastomas—The Promise of Virtual Biopsy?
    Xavier Maximin Le Guillou Horn, François Lecellier, Clement Giraud, Mathieu Naudin, Pierre Fayolle, Céline Thomarat, Christine Fernandez-Maloigne, Rémy Guillevin
    Biomedicines 2024 12 9
  • Optimizing Glioblastoma, IDH-wildtype Treatment Outcomes : A Radiomics and Support Vector Machine-Based Approach to Overall Survival Estimation
    Jiunn-Kai Chong, Priyanka Jain, Shivani Prasad, Navneet Kumar Dubey, Sanjay Saxena, Wen-Cheng Lo
    Journal of Korean Neurosurgical Society 2025 68 1
  • Predicting response to chemotherapy in brain tumor patients based on MRI features
    Rabeet Tariq
    Clinical Neurology and Neurosurgery 2024 244
  • Towards precision medicine in Glioblastoma: Unraveling MGMT methylation status in glioblastoma using adaptive sparse autoencoders
    Sumaiya Fazal, Hafeez Ur Rehman, Moutaz Alazab
    Egyptian Informatics Journal 2025 29
  • Ultrasound-Based Deep Learning Radiomics Nomogram for Tumor and Axillary Lymph Node Status Prediction After Neoadjuvant Chemotherapy
    Yue-Xia Liu, Qing-Hua Liu, Quan-Hui Hu, Jia-Yao Shi, Gui-Lian Liu, Han Liu, Sheng-Chun Shu
    Academic Radiology 2025 32 1
  • Virtual Biopsy for the Prediction of MGMT Promoter Methylation in Gliomas: A Comprehensive Review of Radiomics and Deep Learning Approaches Applied to MRI
    Augusto Leone, Veronica Di Napoli, Nicola Pio Fochi, Giuseppe Di Perna, Uwe Spetzger, Elena Filimonova, Flavio Angileri, Francesco Carbone, Antonio Colamaria
    Diagnostics 2025 15 3
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (5)
American Journal of Neuroradiology
Vol. 42, Issue 5
1 May 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
C.G.B. Yogananda, B.R. Shah, S.S. Nalawade, G.K. Murugesan, F.F. Yu, M.C. Pinho, B.C. Wagner, B. Mickey, T.R. Patel, B. Fei, A.J. Madhuranthakam, J.A. Maldjian
MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status
American Journal of Neuroradiology May 2021, 42 (5) 845-852; DOI: 10.3174/ajnr.A7029

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status
C.G.B. Yogananda, B.R. Shah, S.S. Nalawade, G.K. Murugesan, F.F. Yu, M.C. Pinho, B.C. Wagner, B. Mickey, T.R. Patel, B. Fei, A.J. Madhuranthakam, J.A. Maldjian
American Journal of Neuroradiology May 2021, 42 (5) 845-852; DOI: 10.3174/ajnr.A7029
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • ACKNOWLEDGMENTS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • Erratum
  • PubMed
  • Google Scholar

Cited By...

  • Imaging Genomics of Glioma Revisited: Analytic Methods to Understand Spatial and Temporal Heterogeneity
  • IDH and 1p19q Diagnosis in Diffuse Glioma from Preoperative MRI Using Artificial Intelligence
  • Crossref (66)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma
    Jiefeng Luo, Mika Pan, Ke Mo, Yingwei Mao, Donghua Zou
    Seminars in Cancer Biology 2023 91
  • Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study
    Jionghui Gu, Tong Tong, Dong Xu, Fang Cheng, Chengyu Fang, Chang He, Jing Wang, Baohua Wang, Xin Yang, Kun Wang, Jie Tian, Tian'an Jiang
    Cancer 2023 129 3
  • Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors
    Zhongxiao Li, Yuwei Cong, Xin Chen, Jiping Qi, Jingxian Sun, Tao Yan, He Yang, Junsi Liu, Enzhou Lu, Lixiang Wang, Jiafeng Li, Hong Hu, Cheng Zhang, Quan Yang, Jiawei Yao, Penglei Yao, Qiuyi Jiang, Wenwu Liu, Jiangning Song, Lawrence Carin, Yupeng Chen, Shiguang Zhao, Xin Gao
    iScience 2023 26 1
  • Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: A neuro-oncological investigation
    Sanjay Saxena, Biswajit Jena, Bibhabasu Mohapatra, Neha Gupta, Manudeep Kalra, Mario Scartozzi, Luca Saba, Jasjit S. Suri
    Computers in Biology and Medicine 2023 153
  • Validation of MRI-Based Models to Predict MGMT Promoter Methylation in Gliomas: BraTS 2021 Radiogenomics Challenge
    Byung-Hoon Kim, Hyeonhoon Lee, Kyu Sung Choi, Ju Gang Nam, Chul-Kee Park, Sung-Hye Park, Jin Wook Chung, Seung Hong Choi
    Cancers 2022 14 19
  • Artificial intelligence-driven biomedical genomics
    Kairui Guo, Mengjia Wu, Zelia Soo, Yue Yang, Yi Zhang, Qian Zhang, Hua Lin, Mark Grosser, Deon Venter, Guangquan Zhang, Jie Lu
    Knowledge-Based Systems 2023 279
  • Ultrasound radiomics in personalized breast management: Current status and future prospects
    Jionghui Gu, Tian'an Jiang
    Frontiers in Oncology 2022 12
  • A Comparison of Three Different Deep Learning-Based Models to Predict the MGMT Promoter Methylation Status in Glioblastoma Using Brain MRI
    Shahriar Faghani, Bardia Khosravi, Mana Moassefi, Gian Marco Conte, Bradley J. Erickson
    Journal of Digital Imaging 2023 36 3
  • Prediction of O-6-methylguanine-DNA methyltransferase and overall survival of the patients suffering from glioblastoma using MRI-based hybrid radiomics signatures in machine and deep learning framework
    Sanjay Saxena, Aaditya Agrawal, Prasad Dash, Biswajit Jena, Narendra N. Khanna, Sudip Paul, Mannudeep M. Kalra, Klaudija Viskovic, Mostafa M. Fouda, Luca Saba, Jasjit S. Suri
    Neural Computing and Applications 2023 35 18
  • Fully Automated MR Based Virtual Biopsy of Cerebral Gliomas
    Johannes Haubold, René Hosch, Vicky Parmar, Martin Glas, Nika Guberina, Onofrio Antonio Catalano, Daniela Pierscianek, Karsten Wrede, Cornelius Deuschl, Michael Forsting, Felix Nensa, Nils Flaschel, Lale Umutlu
    Cancers 2021 13 24

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Multiparametric MRI in PEDS Pontine Glioma
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire