Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Research ArticleHead & Neck
Open Access

MRI Texture Analysis Predicts p53 Status in Head and Neck Squamous Cell Carcinoma

M. Dang, J.T. Lysack, T. Wu, T.W. Matthews, S.P. Chandarana, N.T. Brockton, P. Bose, G. Bansal, H. Cheng, J.R. Mitchell and J.C. Dort
American Journal of Neuroradiology January 2015, 36 (1) 166-170; DOI: https://doi.org/10.3174/ajnr.A4110
M. Dang
bDepartment of Radiology (M.D., J.T.L.), University of Calgary, Calgary, Alberta, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.T. Lysack
bDepartment of Radiology (M.D., J.T.L.), University of Calgary, Calgary, Alberta, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Wu
eSchool of Computing, Informatics, Decision Systems Engineering (G.B., T.W.), Arizona State University, Tempe, Arizona.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T.W. Matthews
aFrom the Section of Otolaryngology–Head and Neck Surgery (T.W.M., S.P.C., P.B., J.C.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.P. Chandarana
aFrom the Section of Otolaryngology–Head and Neck Surgery (T.W.M., S.P.C., P.B., J.C.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N.T. Brockton
dDepartment of Population Health Research (N.T.B.), Alberta Health Services, Calgary, Alberta, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Bose
aFrom the Section of Otolaryngology–Head and Neck Surgery (T.W.M., S.P.C., P.B., J.C.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Bansal
eSchool of Computing, Informatics, Decision Systems Engineering (G.B., T.W.), Arizona State University, Tempe, Arizona.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Cheng
cDepartment of Radiology (H.C., J.R.M.), Mayo Clinic College of Medicine, Scottsdale, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.R. Mitchell
cDepartment of Radiology (H.C., J.R.M.), Mayo Clinic College of Medicine, Scottsdale, Arizona
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C. Dort
aFrom the Section of Otolaryngology–Head and Neck Surgery (T.W.M., S.P.C., P.B., J.C.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Parkin DM,
    2. Bray F,
    3. Ferlay J, et al
    . Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74–108
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Ang KK,
    2. Sturgis EM
    . Human papillomavirus as a marker of the natural history and response to therapy of head and neck squamous cell carcinoma. Semin Radiat Oncol 2012;22:128–42
    CrossRefPubMed
  3. 3.↵
    American Joint Committee on Cancer. Cancer Staging Handbook: From the AJCC Cancer Staging Manual. Berlin: Springer-Verlag; 2010
  4. 4.↵
    1. Bauman JE,
    2. Michel LS,
    3. Chung CH
    . New promising molecular targets in head and neck squamous cell carcinoma. Curr Opin Oncol 2012;24:235–42
    CrossRefPubMed
  5. 5.↵
    1. Lane DP
    . Cancer: p53, guardian of the genome. Nature 1992;358:15–16
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Levine AJ,
    2. Momand J,
    3. Finlay CA
    . The p53 tumour suppressor gene. Nature 1991;351:453–56
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Levine AJ,
    2. Perry ME,
    3. Chang A, et al
    . The 1993 Walter Hubert Lecture: the role of the p53 tumour-suppressor gene in tumorigenesis. Br J Cancer 1994;69:409–16
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Hollstein M,
    2. Sidransky D,
    3. Vogelstein B, et al
    . p53 mutations in human cancers. Science 1991;253:49–53
    Abstract/FREE Full Text
  9. 9.↵
    1. Vogelstein B
    . Cancer: a deadly inheritance. Nature 1990;348:681–82
    CrossRefPubMed
  10. 10.↵
    1. Kozomara R,
    2. Jovic N,
    3. Magic Z, et al
    . p53 mutations and human papillomavirus infection in oral squamous cell carcinomas: correlation with overall survival. J Craniomaxillofac Surg 2005;33:342–48
    CrossRefPubMed
  11. 11.↵
    1. Smith EM,
    2. Wang D,
    3. Rubenstein LM, et al
    . Association between p53 and human papillomavirus in head and neck cancer survival. Cancer Epidemiol Biomarkers Prev 2008;17:421–27
    Abstract/FREE Full Text
  12. 12.↵
    1. Soussi T,
    2. Béroud C
    . Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 2001;1:233–40
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Poeta ML,
    2. Manola J,
    3. Goldwasser MA, et al
    . TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med 2007;357:2552–61
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Skinner HD,
    2. Sandulache VC,
    3. Ow TJ, et al
    . TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res 2012;18:290–300
    Abstract/FREE Full Text
  15. 15.↵
    1. De Schepper AM,
    2. De Beuckeleer L,
    3. Vandevenne J, et al
    . Magnetic resonance imaging of soft tissue tumors. Eur Radiol 2000;10:213–23
    CrossRefPubMed
  16. 16.↵
    1. Gielen JL,
    2. De Schepper AM,
    3. Vanhoenacker F, et al
    . Accuracy of MRI in characterization of soft tissue tumors and tumor-like lesions: a prospective study in 548 patients. Eur Radiol 2004;14:2320–30
    CrossRefPubMed
  17. 17.↵
    1. Kransdorf MJ,
    2. Murphey MD
    . Radiologic evaluation of soft-tissue masses: a current perspective. AJR Am J Roentgenol 2000;175:575–87
    CrossRefPubMed
  18. 18.↵
    1. Sundaram M,
    2. McGuire MH,
    3. Herbold DR
    . Magnetic resonance imaging of soft tissue masses: an evaluation of fifty-three histologically proven tumors. Magn Reson Imaging 1988;6:237–48
    CrossRefPubMed
  19. 19.↵
    1. Mahmoud-Ghoneim D,
    2. Toussaint G,
    3. Constans JM, et al
    . Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magn Reson Imaging 2003;21:983–87
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Zhang Y
    . MRI texture analysis in multiple sclerosis. Int J Biomed Imaging 2012;2012:762804
    PubMed
  21. 21.↵
    1. Chang CW,
    2. Ho CC,
    3. Chen JH
    . ADHD classification by a texture analysis of anatomical brain MRI data. Front Syst Neurosci 2012;6:66
    PubMed
  22. 22.↵
    1. Zhang J,
    2. Yu C,
    3. Jiang G, et al
    . 3D texture analysis on MRI images of Alzheimer's disease. Brain Imaging Behav 2012;6:61–69
    CrossRefPubMed
  23. 23.↵
    1. Weyn B,
    2. van de Wouwer G,
    3. van Daele A, et al
    . Automated breast tumor diagnosis and grading based on wavelet chromatin texture description. Cytometry 1998;33:32–40
    CrossRefPubMed
  24. 24.↵
    1. Schilling T,
    2. Miroslaw L,
    3. Glab G, et al
    . Towards rapid cervical cancer diagnosis: automated detection and classification of pathologic cells in phase-contrast images. Int J Gynecol Cancer 2007;17:118–26
    CrossRefPubMed
  25. 25.↵
    1. Brown R,
    2. Zlatescu M,
    3. Sijben A, et al
    . The use of magnetic resonance imaging to noninvasively detect genetic signatures in oligodendroglioma. Clin Cancer Res 2008;14:2357–62
    Abstract/FREE Full Text
  26. 26.↵
    1. Eoli M,
    2. Menghi F,
    3. Bruzzone MG, et al
    . Methylation of O6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival. Clin Cancer Res 2007;13:2606–13
    Abstract/FREE Full Text
  27. 27.↵
    1. Levner I,
    2. Drabycz S,
    3. Roldan G, et al
    . Predicting MGMT methylation status of glioblastomas from MRI texture. Med Image Comput Comput Assist Interv 2009;12:522–30
    PubMed
  28. 28.↵
    1. Drabycz S,
    2. Stockwell RG,
    3. Mitchell JR
    . Image texture characterization using the discrete orthonormal S-transform. J Digit Imaging 2009;22:696–708
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Yu H,
    2. Caldwell C,
    3. Mah K, et al
    . Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imaging 2009;28:374–83
    CrossRefPubMed
  30. 30.↵
    NeoLogica. DICOM Anonymizer Pro. http://www.neologica.it/eng/DICOMAnonymPro.php. Accessed September 12, 2012.
  31. 31.↵
    1. Cheng CH,
    2. Mitchell JR
    . Fast Time-Frequency Transform in 2D (FTFT-2D). IET Signal Processing 2014;8:360–72
    CrossRef
  32. 32.↵
    1. Frank E,
    2. Hall M,
    3. Trigg L, et al
    . Data mining in bioinformatics using Weka. Bioinformatics 2004;20:2479–81
    Abstract/FREE Full Text
  33. 33.↵
    1. Gutlein M,
    2. Frank E,
    3. Hall M, et al
    . Large-scale attribute selection using wrappers. In: Proceedings of IEEE Symposium on Computational Intelligence and Data Mining, Nashville, Tennessee. March 30 to April 2, 2009. Washington: IEEE Computer Society; 2009:332–39
  34. 34.↵
    1. Cheng J,
    2. Greiner R
    . Comparing Bayesian network classifiers. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden. July 30–31, 1999:101–08
  35. 35.↵
    1. Heckerman D
    . Bayesian networks for data mining. Data Mining and Knowledge Discovery 1997;1:79–119
    CrossRefWeb of Science
  36. 36.↵
    1. Hruschka ER Jr.,
    2. Hruschka ER,
    3. Ebecken NF
    . Bayesian networks for imputation in classification problems. Journal of Intelligent Information Systems 2007;29:231–52
    CrossRef
  37. 37.↵
    1. Liu C,
    2. Zhang H,
    3. Pan Y, et al
    . Towards MIB-1 and p53 detection in glioma magnetic resonance image: a novel computational image analysis method. Phys Med Biol 2012;57:8393–404
    CrossRefPubMed
  38. 38.↵
    1. Fruehwald-Pallamar J,
    2. Czerny C,
    3. Holzer-Fruehwald L, et al
    . Texture-based and diffusion-weighted discrimination of parotid gland lesions on MR images at 3.0 Tesla. NMR Biomed 2013;26:1372–79
    CrossRefPubMed
  39. 39.↵
    1. Mayerhoefer ME,
    2. Schima W,
    3. Trattnig S, et al
    . Texture-based classification of focal liver lesions on MRI at 3.0 Tesla: a feasibility study in cysts and hemangiomas. J Magn Reson Imaging 2010;32:352–59
    CrossRefPubMed
  40. 40.↵
    1. Shi Z,
    2. Yang Z,
    3. Zhang G, et al
    . Characterization of texture features of bladder carcinoma and the bladder wall on MRI: initial experience. Acad Radiol 2013;20:930–38
    CrossRefPubMed
  41. 41.↵
    1. Guo R,
    2. Li Q,
    3. Meng L, et al
    . P53 and vascular endothelial growth factor expressions are two important indices for prognosis in gastric carcinoma. West Indian Med J 2008;57:2–6
    PubMed
  42. 42.↵
    1. Riedel F,
    2. Götte K,
    3. Schwalb J, et al
    . Vascular endothelial growth factor expression correlates with p53 mutation and angiogenesis in squamous cell carcinoma of the head and neck. Acta Otolaryngol 2000;120:105–11
    PubMed
  43. 43.↵
    1. Uchida S,
    2. Shimada Y,
    3. Watanabe G, et al
    . In oesophageal squamous cell carcinoma vascular endothelial growth factor is associated with p53 mutation, advanced stage and poor prognosis. Br J Cancer 1998;77:1704–09
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Ahmed A,
    2. Gibbs P,
    3. Pickles M, et al
    . Texture analysis in assessment and prediction of chemotherapy response in breast cancer. J Magn Reson Imaging 2013;38:89–101
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 36 (1)
American Journal of Neuroradiology
Vol. 36, Issue 1
1 Jan 2015
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MRI Texture Analysis Predicts p53 Status in Head and Neck Squamous Cell Carcinoma
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
M. Dang, J.T. Lysack, T. Wu, T.W. Matthews, S.P. Chandarana, N.T. Brockton, P. Bose, G. Bansal, H. Cheng, J.R. Mitchell, J.C. Dort
MRI Texture Analysis Predicts p53 Status in Head and Neck Squamous Cell Carcinoma
American Journal of Neuroradiology Jan 2015, 36 (1) 166-170; DOI: 10.3174/ajnr.A4110

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
MRI Texture Analysis Predicts p53 Status in Head and Neck Squamous Cell Carcinoma
M. Dang, J.T. Lysack, T. Wu, T.W. Matthews, S.P. Chandarana, N.T. Brockton, P. Bose, G. Bansal, H. Cheng, J.R. Mitchell, J.C. Dort
American Journal of Neuroradiology Jan 2015, 36 (1) 166-170; DOI: 10.3174/ajnr.A4110
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Prediction of Tumor Grade and Nodal Status in Oropharyngeal and Oral Cavity Squamous-cell Carcinoma Using a Radiomic Approach
  • MRI texture analysis as a predictor of tumor recurrence or progression in patients with clinically non-functioning pituitary adenomas
  • Additional Clinical Value for PET/MRI in Oncology: Moving Beyond Simple Diagnosis
  • MRI-Based Texture Analysis to Differentiate Sinonasal Squamous Cell Carcinoma from Inverted Papilloma
  • Crossref (77)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning
    Reza Forghani, Avishek Chatterjee, Caroline Reinhold, Almudena Pérez-Lara, Griselda Romero-Sanchez, Yoshiko Ueno, Maryam Bayat, James W. M. Alexander, Lynda Kadi, Jeffrey Chankowsky, Jan Seuntjens, Behzad Forghani
    European Radiology 2019 29 11
  • Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: A simulation study utilizing ground truth
    Fei Yang, Nesrin Dogan, Radka Stoyanova, John Chetley Ford
    Physica Medica 2018 50
  • MRI features predict p53 status in lower-grade gliomas via a machine-learning approach
    Yiming Li, Zenghui Qian, Kaibin Xu, Kai Wang, Xing Fan, Shaowu Li, Tao Jiang, Xing Liu, Yinyan Wang
    NeuroImage: Clinical 2018 17
  • Quantitative Radiomics: Impact of Pulse Sequence Parameter Selection on MRI-Based Textural Features of the Brain
    John Ford, Nesrin Dogan, Lori Young, Fei Yang
    Contrast Media & Molecular Imaging 2018 2018
  • Exploring Applications of Radiomics in Magnetic Resonance Imaging of Head and Neck Cancer: A Systematic Review
    Amit Jethanandani, Timothy A. Lin, Stefania Volpe, Hesham Elhalawani, Abdallah S. R. Mohamed, Pei Yang, Clifton D. Fuller
    Frontiers in Oncology 2018 8
  • Dual-Energy CT Texture Analysis With Machine Learning for the Evaluation and Characterization of Cervical Lymphadenopathy
    Matthew Seidler, Behzad Forghani, Caroline Reinhold, Almudena Pérez-Lara, Griselda Romero-Sanchez, Nikesh Muthukrishnan, Julian L. Wichmann, Gabriel Melki, Eugene Yu, Reza Forghani
    Computational and Structural Biotechnology Journal 2019 17
  • Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm
    Eiman Al Ajmi, Behzad Forghani, Caroline Reinhold, Maryam Bayat, Reza Forghani
    European Radiology 2018 28 6
  • Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures
    Steven W. Mes, Floris H. P. van Velden, Boris Peltenburg, Carel F. W. Peeters, Dennis E. te Beest, Mark A. van de Wiel, Joost Mekke, Doriene C. Mulder, Roland M. Martens, Jonas A. Castelijns, Frank A. Pameijer, Remco de Bree, Ronald Boellaard, C. René Leemans, Ruud H. Brakenhoff, Pim de Graaf
    European Radiology 2020 30 11
  • The utility of MRI histogram and texture analysis for the prediction of histological diagnosis in head and neck malignancies
    Noriyuki Fujima, Akihiro Homma, Taisuke Harada, Yukie Shimizu, Khin Khin Tha, Satoshi Kano, Takatsugu Mizumachi, Ruijiang Li, Kohsuke Kudo, Hiroki Shirato
    Cancer Imaging 2019 19 1
  • Characterization of Adrenal Lesions on Unenhanced MRI Using Texture Analysis: A Machine‐Learning Approach
    Valeria Romeo, Simone Maurea, Renato Cuocolo, Mario Petretta, Pier Paolo Mainenti, Francesco Verde, Milena Coppola, Serena Dell'Aversana, Arturo Brunetti
    Journal of Magnetic Resonance Imaging 2018 48 1

More in this TOC Section

  • Chondrosarcoma vs Synovial Chondromatosis: Imaging
  • WHO Classification Update: Nasal&Skull Base Tumors
  • Peritumoral Signal in Vestibular Schwannomas
Show more HEAD & NECK

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire