Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Research ArticleAdult Brain
Open Access

Machine Learning–Based Prediction of Small Intracranial Aneurysm Rupture Status Using CTA-Derived Hemodynamics: A Multicenter Study

Z. Shi, G.Z. Chen, L. Mao, X.L. Li, C.S. Zhou, S. Xia, Y.X. Zhang, B. Zhang, B. Hu, G.M. Lu and L.J. Zhang
American Journal of Neuroradiology April 2021, 42 (4) 648-654; DOI: https://doi.org/10.3174/ajnr.A7034
Z. Shi
aFrom the Department of Diagnostic Radiology (Z.S., C.S.Z., B.H., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Z. Shi
G.Z. Chen
bDepartment of Medical Imaging (G.Z.C.), Nanjing First Hospital, Nanjing, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.Z. Chen
L. Mao
cDeepwise AI Lab (L.M., X.L.L.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Mao
X.L. Li
cDeepwise AI Lab (L.M., X.L.L.), Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X.L. Li
C.S. Zhou
aFrom the Department of Diagnostic Radiology (Z.S., C.S.Z., B.H., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C.S. Zhou
S. Xia
dDepartment of Radiology (S.X.), Tianjin First Central Hospital, Tianjin, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Xia
Y.X. Zhang
eLaboratory of Image Science and Technology (Y.X.Z.), School of Computer Science and Engineering, Southeast University, Nanjing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y.X. Zhang
B. Zhang
fDepartment of Radiology (B.Z.), Taizhou People’s Hospital, Taizhou, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Zhang
B. Hu
aFrom the Department of Diagnostic Radiology (Z.S., C.S.Z., B.H., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. Hu
G.M. Lu
aFrom the Department of Diagnostic Radiology (Z.S., C.S.Z., B.H., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.M. Lu
L.J. Zhang
aFrom the Department of Diagnostic Radiology (Z.S., C.S.Z., B.H., G.M.L., L.J.Z.), Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L.J. Zhang
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Vlak MH,
    2. Algra A,
    3. Brandenburg R, et al
    . Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 2011;10:626–36 doi:10.1016/S1474-4422(11)70109-0 pmid:21641282
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Murayama Y,
    2. Takao H,
    3. Ishibashi T, et al
    . Risk analysis of unruptured intracranial aneurysms: prospective 10-year cohort study. Stroke 2016;47:365–71 doi:10.1161/STROKEAHA.115.010698 pmid:26742803
    Abstract/FREE Full Text
  3. 3.↵
    1. Lee GJ,
    2. Eom KS,
    3. Lee C, et al
    . Rupture of very small intracranial aneurysms: incidence and clinical characteristics. J Cerebrovasc Endovasc Neurosurg 2015;17:217–22 doi:10.7461/jcen.2015.17.3.217 pmid:26526401
    CrossRefPubMed
  4. 4.↵
    1. Bender MT,
    2. Wendt H,
    3. Monarch T, et al
    . Small aneurysms account for the majority and increasing percentage of aneurysmal subarachnoid hemorrhage: a 25-year, single-institution study. Neurosurgery 2018;83:692–99 doi:10.1093/neuros/nyx484 pmid:29029314
    CrossRefPubMed
  5. 5.↵
    1. Malhotra A,
    2. Wu X,
    3. Forman HP, et al
    . Management of tiny unruptured intracranial aneurysms: a comparative effectiveness analysis. JAMA Neurol 2018;75:27–34 doi:10.1001/jamaneurol.2017.3232 pmid:29159405
    CrossRefPubMed
  6. 6.↵
    1. Malhotra A,
    2. Wu X,
    3. Forman HP, et al
    . Growth and rupture risk of small unruptured intracranial aneurysms. Ann Intern Med 2017;167:26–33 doi:10.7326/M17-0246 pmid:28586893
    CrossRefPubMed
  7. 7.↵
    1. Thompson BG,
    2. Brown RD Jr.,
    3. Amin-Hanjani S, et al
    . American Stroke Association, American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, and Council on Epidemiology and Prevention. Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2015;46:2368–400 doi:10.1161/STR.0000000000000070 pmid:26089327
    Abstract/FREE Full Text
  8. 8.↵
    1. Greving JP,
    2. Wermer MJ,
    3. Brown RD Jr., et al
    . Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol 2014;13:59–66 doi:10.1016/S1474-4422(13)70263-1 pmid:24290159
    CrossRefPubMed
  9. 9.↵
    1. UCAS Japan Investigators,
    2. Morita A,
    3. Kirino T, et al
    . UCAS Japan Investigators. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med 2012;366:2474–82 doi:10.1056/NEJMoa1113260] pmid:22738097
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Kataoka K,
    2. Taneda M,
    3. Asai T, et al
    . Difference in nature of ruptured and unruptured cerebral aneurysms. Lancet 2000;355:203 doi:10.1016/S0140-6736(99)03881-7 pmid:10675125
    CrossRefPubMed
  11. 11.↵
    1. Meng H,
    2. Tutino VM,
    3. Xiang J, et al
    . High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 2014;35:1254–62 doi:10.3174/ajnr.A3558 pmid:23598838
    Abstract/FREE Full Text
  12. 12.↵
    1. Suzuki T,
    2. Takao H,
    3. Rapaka S, et al
    . Rupture risk of small unruptured intracranial aneurysms in Japanese adults. Stroke 2020;51:641–43 doi:10.1161/STROKEAHA.119.027664 pmid:31813355
    CrossRefPubMed
  13. 13.↵
    1. Güresir E,
    2. Vatter H,
    3. Schuss P, et al
    . Natural history of small unruptured anterior circulation aneurysms: a prospective cohort study. Stroke 2013;44:3027–31 doi:10.1161/STROKEAHA.113.001107 pmid:24003049
    Abstract/FREE Full Text
  14. 14.↵
    1. Varble N,
    2. Tutino VM,
    3. Yu J, et al
    . Shared and distinct rupture discriminants of small and large intracranial aneurysms. Stroke 2018;49:856–64 doi:10.1161/STROKEAHA.117.019929 pmid:29535267
    Abstract/FREE Full Text
  15. 15.↵
    1. Krittanawong C,
    2. Zhang H,
    3. Wang Z, et al
    . Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol 2017;69:2657–64 doi:10.1016/j.jacc.2017.03.571 pmid:28545640
    FREE Full Text
  16. 16.↵
    1. Darcy AM,
    2. Louie AK,
    3. Roberts LW
    . Machine learning and the profession of medicine. JAMA 2016;315:551–52 doi:10.1001/jama.2015.18421 pmid:26864406
    CrossRefPubMed
  17. 17.↵
    1. Beam AL,
    2. Kohane IS
    . Big data and machine learning in health care. JAMA 2018;319:1317–18 doi:10.1001/jama.2017.18391 pmid:29532063
    CrossRefPubMed
  18. 18.↵
    1. Zack CJ,
    2. Senecal C,
    3. Kinar Y, et al
    . Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention. JACC Cardiovasc Interv 2019;12:1304–11 doi:10.1016/j.jcin.2019.02.035 pmid:31255564
    Abstract/FREE Full Text
  19. 19.↵
    1. Tanioka S,
    2. Ishida F,
    3. Yamamoto A, et al
    . Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters. Radiology: Artifcial Intelligence 2020;2:e190077 doi:10.1148/ryai.2019190077
    CrossRef
  20. 20.↵
    1. Kim HC,
    2. Rhim JK,
    3. Ahn JH, et al
    . Machine learning application for rupture risk assessment in small-sized intracranial aneurysm. J Clin Med 2019;8:683 doi:10.3390/jcm8050683 pmid:31096607
    CrossRefPubMed
  21. 21.↵
    1. Ren Y,
    2. Chen GZ,
    3. Liu Z, et al
    . Reproducibility of image-based computational models of intracranial aneurysm: a comparison between 3D rotational angiography, CT angiography and MR angiography. Biomed Eng Online 2016;15:50 doi:10.1186/s12938-016-0163-4 pmid:27150439
    CrossRefPubMed
  22. 22.↵
    1. Can A,
    2. Du R
    . Association of hemodynamic factors with intracranial aneurysm formation and rupture: systematic review and meta-analysis. Neurosurgery 2016;78:510–20 doi:10.1227/NEU.0000000000001083 pmid:26516819
    CrossRefPubMed
  23. 23.↵
    1. Cebral JR,
    2. Mut F,
    3. Weir J, et al
    . Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol 2011;32:264–70 doi:10.3174/ajnr.A2274 pmid:21051508
    Abstract/FREE Full Text
  24. 24.↵
    1. Detmer FJ,
    2. Chung BJ,
    3. Mut F, et al
    . Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics. Int J Comput Assist Radiology Surg 2018;13:1767–79 doi:10.1007/s11548-018-1837-0 pmid:30094777
    CrossRefPubMed
  25. 25.↵
    1. Hanley JA,
    2. McNeil BJ
    . The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29–36 doi:10.1148/radiology.143.1.7063747 pmid:7063747
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Pedregosa F,
    2. Varoquaux G,
    3. Gramfort A, et al
    . Scikit-learn: machine learning in Python. Journal of Machine Leaning Research 2011;12:2825–30
  27. 27.↵
    1. Hae H,
    2. Kang SJ,
    3. Kim WJ, et al
    . Machine learning assessment of myocardial ischemia using angiography: development and retrospective validation. PLoS Med 2018;15:e1002693 doi:10.1371/journal.pmed.1002693 pmid:30422987
    CrossRefPubMed
  28. 28.↵
    1. Detmer FJ,
    2. Lückehe D,
    3. Mut F, et al
    . Comparison of statistical learning approaches for cerebral aneurysm rupture assessment. Int J Comput Assist Radiology Surg 2019;15:1401–50 doi:10.1007/s11548-019-02065-2 pmid:31485987
    CrossRefPubMed
  29. 29.↵
    1. Chiu JJ,
    2. Chien S
    . Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011;91:327–87 doi:10.1152/physrev.00047.2009 pmid:21248169
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Chatziprodromou I,
    2. Tricoli A,
    3. Poulikakos D, et al
    . Haemodynamics and wall remodelling of a growing cerebral aneurysm: a computational model. J Biomech 2007;40:412–26 doi:10.1016/j.jbiomech.2005.12.009 pmid:16527284
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Pereira VM,
    2. Brina O,
    3. Bijlenga P, et al
    . Wall shear stress distribution of small aneurysms prone to rupture: a case-control study. Stroke 2014;45:261–64 doi:10.1161/STROKEAHA.113.003247 pmid:24253545
    Abstract/FREE Full Text
  32. 32.↵
    1. Lauric A,
    2. Hippelheuser J,
    3. Cohen AD, et al
    . Wall shear stress association with rupture status in volume matched sidewall aneurysms. J Neurointerv Surg 2014;6:466–73 doi:10.1136/neurintsurg-2013-010871 pmid:23929550
    Abstract/FREE Full Text
  33. 33.↵
    1. Miura Y,
    2. Ishida F,
    3. Umeda Y, et al
    . Low wall shear stress is independently associated with the rupture status of middle cerebral artery aneurysms. Stroke 2013;44:519–21 doi:10.1161/STROKEAHA.112.675306 pmid:23223503
    Abstract/FREE Full Text
  34. 34.↵
    1. Goubergrits L,
    2. Schaller J,
    3. Kertzscher U, et al
    . Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. J R Soc Interface 2012;9:677–88 doi:10.1098/rsif.2011.0490 pmid:21957117
    CrossRefPubMed
  35. 35.↵
    1. Chalouhi N,
    2. Hoh BL,
    3. Hasan D
    . Review of cerebral aneurysm formation, growth, and rupture. Stroke 2013;44:3613–22 doi:10.1161/STROKEAHA.113.002390 pmid:24130141
    FREE Full Text
  36. 36.↵
    1. Xiang J,
    2. Natarajan SK,
    3. Tremmel M, et al
    . Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 2011;42:144–52 doi:10.1161/STROKEAHA.110.592923 pmid:21106956
    CrossRefPubMed
  37. 37.↵
    1. Liang L,
    2. Steinman DA,
    3. Brina O, et al
    . Towards the clinical utility of CFD for assessment of intracranial aneurysm rupture: a systematic review and novel parameter-ranking tool. J Neurointerv Surg 2019;11:153–58 doi:10.1136/neurintsurg-2018-014246 pmid:30341160
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (4)
American Journal of Neuroradiology
Vol. 42, Issue 4
1 Apr 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Machine Learning–Based Prediction of Small Intracranial Aneurysm Rupture Status Using CTA-Derived Hemodynamics: A Multicenter Study
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
Z. Shi, G.Z. Chen, L. Mao, X.L. Li, C.S. Zhou, S. Xia, Y.X. Zhang, B. Zhang, B. Hu, G.M. Lu, L.J. Zhang
Machine Learning–Based Prediction of Small Intracranial Aneurysm Rupture Status Using CTA-Derived Hemodynamics: A Multicenter Study
American Journal of Neuroradiology Apr 2021, 42 (4) 648-654; DOI: 10.3174/ajnr.A7034

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Machine Learning–Based Prediction of Small Intracranial Aneurysm Rupture Status Using CTA-Derived Hemodynamics: A Multicenter Study
Z. Shi, G.Z. Chen, L. Mao, X.L. Li, C.S. Zhou, S. Xia, Y.X. Zhang, B. Zhang, B. Hu, G.M. Lu, L.J. Zhang
American Journal of Neuroradiology Apr 2021, 42 (4) 648-654; DOI: 10.3174/ajnr.A7034
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref (36)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • Prediction of cerebral aneurysm rupture risk by machine learning algorithms: a systematic review and meta-analysis of 18,670 participants
    Mohammad Amin Habibi, Amirata Fakhfouri, Mohammad Sina Mirjani, Alireza Razavi, Ali Mortezaei, Yasna Soleimani, Sohrab Lotfi, Shayan Arabi, Ladan Heidaresfahani, Sara Sadeghi, Poriya Minaee, SeyedMohammad Eazi, Farhang Rashidi, Milad Shafizadeh, Shahram Majidi
    Neurosurgical Review 2024 47 1
  • Evaluation of an automated intracranial aneurysm detection and rupture analysis approach using cascade detection and classification networks
    Ke Wu, Dongdong Gu, Peihong Qi, Xiaohuan Cao, Dijia Wu, Lei Chen, Guoxiang Qu, Jiayu Wang, Xianpan Pan, Xuechun Wang, Yuntian Chen, Lizhou Chen, Zhong Xue, Jinhao Lyu
    Computerized Medical Imaging and Graphics 2022 102
  • Classifying Ruptured Middle Cerebral Artery Aneurysms With a Machine Learning Based, Radiomics-Morphological Model: A Multicentral Study
    Dongqin Zhu, Yongchun Chen, Kuikui Zheng, Chao Chen, Qiong Li, Jiafeng Zhou, Xiufen Jia, Nengzhi Xia, Hao Wang, Boli Lin, Yifei Ni, Peipei Pang, Yunjun Yang
    Frontiers in Neuroscience 2021 15
  • A Review of Artificial Intelligence in Cerebrovascular Disease Imaging: Applications and Challenges
    Xi Chen, Yu Lei, Jiabin Su, Heng Yang, Wei Ni, Jinhua Yu, Yuxiang Gu, Ying Mao
    Current Neuropharmacology 2022 20 7
  • Interpretable machine learning model to predict rupture of small intracranial aneurysms and facilitate clinical decision
    WeiGen Xiong, TingTing Chen, Jun Li, Lan Xiang, Cheng Zhang, Liang Xiang, YingBin Li, Dong Chu, YueZhang Wu, Qiong Jie, RunZe Qiu, ZeYue Xu, JianJun Zou, HongWei Fan, ZhiHong Zhao
    Neurological Sciences 2022 43 11
  • ARISE I Consensus Review on the Management of Intracranial Aneurysms
    Stavropoula I. Tjoumakaris, Ricardo Hanel, J Mocco, M. Ali-Aziz Sultan, Michael Froehler, Barry B. Lieber, Alexander Coon, Satoshi Tateshima, David J. Altschul, Sandra Narayanan, Kareem El Naamani, Phil Taussky, Brian L. Hoh, Philip Meyers, Matthew J. Gounis, David S. Liebeskind, Victor Volovici, Gabor Toth, Adam Arthur, Ajay K. Wakhloo
    Stroke 2024 55 5
  • An Extensive Review on Deep Learning and Machine Learning Intervention in Prediction and Classification of Types of Aneurysms
    Renugadevi Ammapalayam Sinnaswamy, Natesan Palanisamy, Kavitha Subramaniam, Suresh Muthusamy, Ravita Lamba, Sreejith Sekaran
    Wireless Personal Communications 2023 131 3
  • An Integrated Model Combining Machine Learning and Deep Learning Algorithms for Classification of Rupture Status of IAs
    Rong Chen, Xiao Mo, Zhenpeng Chen, Pujie Feng, Haiyun Li
    Frontiers in Neurology 2022 13
  • Unruptured cerebral aneurysm risk stratification: Background, current research, and future directions in aneurysm assessment
    Michael A. Silva, Stephanie Chen, Robert M. Starke
    Surgical Neurology International 2022 13
  • Automatic risk prediction of intracranial aneurysm on CTA image with convolutional neural networks and radiomics analysis
    Yuan Xie, Shuyu Liu, Hen Lin, Min Wu, Feng Shi, Feng Pan, Lichi Zhang, Bin Song
    Frontiers in Neurology 2023 14

More in this TOC Section

Adult Brain

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Clinical Outcomes After Chiari I Decompression
  • Segmentation of Brain Metastases with BLAST
Show more Adult Brain

Functional

  • Kurtosis and Epileptogenic Tubers: A Pilot Study
  • Glutaric Aciduria Type 1: DK vs. Conventional MRI
  • Brain Iron in Niemann-Pick Type C: 7T Study
Show more Functional

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire