Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • ASNR Foundation Special Collection
    • Most Impactful AJNR Articles
    • Photon-Counting CT
    • Spinal CSF Leak Articles (Jan 2020-June 2024)
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR is seeking candidates for the AJNR Podcast Editor. Read the position description.

Review ArticlePATIENT SAFETY
Open Access

Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update

J. Ramalho, R.C. Semelka, M. Ramalho, R.H. Nunes, M. AlObaidy and M. Castillo
American Journal of Neuroradiology July 2016, 37 (7) 1192-1198; DOI: https://doi.org/10.3174/ajnr.A4615
J. Ramalho
aFrom the Departments of Neuroradiology (J.R., R.H.N., M.C.)
cCentro Hospitalar de Lisboa Central (J.R.), Lisbon, Portugal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Ramalho
R.C. Semelka
bRadiology (R.C.S., M.R., R.H.N., M.A.), University of North Carolina Hospital, Chapel Hill, North Carolina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.C. Semelka
M. Ramalho
bRadiology (R.C.S., M.R., R.H.N., M.A.), University of North Carolina Hospital, Chapel Hill, North Carolina
dHospital Garcia de Orta (M.R.), Almada, Portugal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Ramalho
R.H. Nunes
aFrom the Departments of Neuroradiology (J.R., R.H.N., M.C.)
bRadiology (R.C.S., M.R., R.H.N., M.A.), University of North Carolina Hospital, Chapel Hill, North Carolina
eSanta Casa de Misericórdia de São Paulo (R.H.N.), São Paulo, Brazil
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.H. Nunes
M. AlObaidy
bRadiology (R.C.S., M.R., R.H.N., M.A.), University of North Carolina Hospital, Chapel Hill, North Carolina
fKing Faisal Specialist Hospital and Research Center (M.A.), Riyadh, Saudi Arabia.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. AlObaidy
M. Castillo
aFrom the Departments of Neuroradiology (J.R., R.H.N., M.C.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Castillo
  • Article
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Hao D,
    2. Ai T,
    3. Goerner F, et al
    . MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging 2012;36:1060–71 doi:10.1002/jmri.23725 pmid:23090917
    CrossRefPubMed
  2. 2.↵
    1. Bleicher AG,
    2. Kanal E
    . Assessment of adverse reaction rates to a newly approved MRI contrast agent: review of 23,553 administrations of gadobenate dimeglumine. AJR Am J Roentgenol 2008;191:W307–11 doi:10.2214/AJR.07.3951 pmid:19020220
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Kanal E,
    2. Tweedle MF
    . Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology 2015;275:630–34 doi:10.1148/radiol.2015150805 pmid:25942418
    CrossRefPubMed
  4. 4.↵
    1. Ersoy H,
    2. Rybicki FJ
    . Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J Magn Reson Imaging 2007;26:1190–97 doi:10.1002/jmri.21135 pmid:17969161
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Lin SP,
    2. Brown JJ
    . MR contrast agents: physical and pharmacologic basics. J Magn Reson Imaging 2007;25:884–99 doi:10.1002/jmri.20955 pmid:17457803
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Gierada DS,
    2. Bae KT
    . Gadolinium as a CT contrast agent: assessment in a porcine model. Radiology 1999;210:829–34 doi:10.1148/radiology.210.3.r99mr06829 pmid:10207488
    CrossRefPubMed
  7. 7.↵
    1. Quinn AD,
    2. O'Hare NJ,
    3. Wallis FJ, et al
    . Gd-DTPA: an alternative contrast medium for CT. J Comput Assist Tomogr 1994;18:634–36 doi:10.1097/00004728-199407000-00022 pmid:8040451
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Henson JW,
    2. Nogueira RG,
    3. Covarrubias DJ, et al
    . Gadolinium-enhanced CT angiography of the circle of Willis and neck. AJNR Am J Neuroradiol 2004;25:969–72 pmid:15205132
    Abstract/FREE Full Text
  9. 9.↵
    1. Bonvento MJ,
    2. Moore WH,
    3. Button TM, et al
    . CT angiography with gadolinium-based contrast media. Acad Radiol 2006;13:979–85 doi:10.1016/j.acra.2006.03.019 pmid:16843850
    CrossRefPubMed
  10. 10.↵
    1. Grobner T
    . Gadolinium: a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 2005;21:1104–08 doi:10.1093/ndt/gfk062 pmid:16431890
    CrossRefPubMed
  11. 11.↵
    1. Marckmann P
    . Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 2006;17:2359–62 doi:10.1681/ASN.2006060601 pmid:16885403
    Abstract/FREE Full Text
  12. 12.↵
    1. Thomsen HS
    . Nephrogenic systemic fibrosis: history and epidemiology. Radiol Clin North Am 2009;47:827–31, vi doi:10.1016/j.rcl.2009.05.003 pmid:19744597
    CrossRefPubMed
  13. 13.↵
    1. Broome DR
    . Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol 2008;66:230–34 doi:10.1016/j.ejrad.2008.02.011 pmid:18372138
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Abujudeh HH,
    2. Kaewlai R,
    3. Kagan A, et al
    . Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: case series of 36 patients. Radiology 2009;253:81–89 doi:10.1148/radiol.2531082160 pmid:19709997
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Wertman R,
    2. Altun E,
    3. Martin DR, et al
    . Risk of nephrogenic systemic fibrosis: evaluation of gadolinium chelate contrast agents at four American universities. Radiology 2008;248:799–806 doi:10.1148/radiol.2483072093 pmid:18632533
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Hope TA,
    2. Herfkens RJ,
    3. Denianke KS, et al
    . Nephrogenic systemic fibrosis in patients with chronic kidney disease who received gadopentetate dimeglumine. Invest Radiol 2009;44:135–39 doi:10.1097/RLI.0b013e31819343ba pmid:19151610
    CrossRefPubMed
  17. 17.↵
    1. Fretellier N,
    2. Idée JM,
    3. Guerret S, et al
    . Clinical, biological, and skin histopathologic effects of ionic macrocyclic and nonionic linear gadolinium chelates in a rat model of nephrogenic systemic fibrosis. Invest Radiol 2011;46:85–93 doi:10.1097/RLI.0b013e3181f54044 pmid:20938344
    CrossRefPubMed
  18. 18.↵
    1. Kanda T,
    2. Ishii K,
    3. Kawaguchi H, et al
    . High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2014;270:834–41 doi:10.1148/radiol.13131669 pmid:24475844
    CrossRefPubMed
  19. 19.↵
    1. Errante Y,
    2. Cirimele V,
    3. Mallio CA, et al
    . Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest Radiol 2014;49:685–90 doi:10.1097/RLI.0000000000000072 pmid:24872007
    CrossRefPubMed
  20. 20.↵
    1. Quattrocchi CC,
    2. Mallio CA,
    3. Errante Y, et al
    . Gadodiamide and dentate nucleus T1 hyperintensity in patients with meningioma evaluated by multiple follow-up contrast-enhanced magnetic resonance examinations with no systemic interval therapy. Invest Radiol 2015;50:470–72 doi:10.1097/RLI.0000000000000154 pmid:25756685
    CrossRefPubMed
  21. 21.↵
    1. Ramalho J,
    2. Castillo M,
    3. AlObaidy M, et al
    . High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology 2015;276:836–44 doi:10.1148/radiol.2015150872 pmid:26079490
    CrossRefPubMed
  22. 22.↵
    1. Kanda T,
    2. Osawa M,
    3. Oba H, et al
    . High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 2015;275:803–09 doi:10.1148/radiol.14140364 pmid:25633504
    CrossRefPubMed
  23. 23.↵
    1. Roccatagliata L,
    2. Vuolo L,
    3. Bonzano L, et al
    . Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with the secondary progressive subtype. Radiology 2009;251:503–10 doi:10.1148/radiol.2511081269 pmid:19401576
    CrossRefPubMed
  24. 24.↵
    1. Kasahara S,
    2. Miki Y,
    3. Kanagaki M, et al
    . Hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with a history of brain irradiation. Radiology 2011;258:222–28 doi:10.1148/radiol.10100508 pmid:21045180
    CrossRefPubMed
  25. 25.↵
    1. Adin ME,
    2. Kleinberg L,
    3. Vaidya D, et al
    . Hyperintense dentate nuclei on T1-weighted MRI: relation to repeat gadolinium administration. AJNR Am J Neuroradiol 2015;36:1859–65 doi:10.3174/ajnr.A4378 pmid:26294649
    Abstract/FREE Full Text
  26. 26.↵
    1. McDonald RJ,
    2. McDonald JS,
    3. Kallmes DF, et al
    . Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015;275:772–82 doi:10.1148/radiol.15150025 pmid:25742194
    CrossRefPubMed
  27. 27.↵
    1. Kanda T,
    2. Fukusato T,
    3. Matsuda M, et al
    . Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015;276:228–32 doi:10.1148/radiol.2015142690 pmid:25942417
    CrossRefPubMed
  28. 28.↵
    1. Robert P,
    2. Lehericy S,
    3. Grand S, et al
    . T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents. Invest Radiol 2015;50:473–80 doi:10.1097/RLI.0000000000000181 pmid:26107651
    CrossRefPubMed
  29. 29.↵
    1. Radbruch A,
    2. Weberling LD,
    3. Kieslich PJ, et al
    . Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology 2015;275:783–91 doi:10.1148/radiol.2015150337 pmid:25848905
    CrossRefPubMed
  30. 30.↵
    1. Weberling LD,
    2. Kieslich PJ,
    3. Kickingereder P, et al
    . Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration. Invest Radiol 2015:50:743–48 doi:10.1097/RLI.0000000000000206 pmid:26352749
    CrossRefPubMed
  31. 31.↵
    1. Stojanov DA,
    2. Aracki-Trenkic A,
    3. Vojinovic S, et al
    . Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol. Eur Radiol 2015 Jun 25. [Epub ahead of print] pmid:26105022
  32. 32.↵
    1. Thompson CC
    1. de Campos RO,
    2. Herédia V,
    3. Ramalho M, et al
    . Application of gadolinium based contrast agents in abdominal magnetic resonance imaging: important considerations. In: Thompson CC, ed. Gadolinium: Compounds, Production and Applications. New York: Nova Science Publishers; 2009:chap 5
  33. 33.↵
    1. Frenzel T,
    2. Lengsfeld P,
    3. Schirmer H, et al
    . Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 2008;43:817–28 doi:10.1097/RLI.0b013e3181852171 pmid:19002053
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Idée JM,
    2. Port M,
    3. Robic C, et al
    . Role of thermodynamic and kinetic parameters in gadolinium chelate stability. J Magn Reson Imaging 2009;30:1249–58 doi:10.1002/jmri.21967 pmid:19938037
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Prince MR,
    2. Erel HE,
    3. Lent RW, et al
    . Gadodiamide administration causes spurious hypocalcemia. Radiology 2003;227:639–46 doi:10.1148/radiol.2273012007 pmid:12773671
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Laurent S,
    2. Elst LV,
    3. Copoix F, et al
    . Stability of MRI paramagnetic contrast media: a proton relaxometric protocol for transmetallation assessment. Invest Radiol 2001;36:115–22 doi:10.1097/00004424-200102000-00008 pmid:11224760
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Tweedle MF,
    2. Wedeking P,
    3. Kumar K
    . Biodistribution of radiolabeled, formulated gadopentetate, gadoteridol, gadoterate, and gadodiamide in mice and rats. Invest Radiol 1995;30:372–80 doi:10.1097/00004424-199506000-00008 pmid:7490190
    CrossRefPubMed
  38. 38.↵
    1. Tweedle MF,
    2. Hagan JJ,
    3. Kumar K, et al
    . Reaction of gadolinium chelates with endogenously available ions. Magn Reson Imaging 1991;9:409–15 doi:10.1016/0730-725X(91)90429-P pmid:1881260
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Corot C,
    2. Idée JM,
    3. Hentsch AM, et al
    . Structure-activity relationship of macrocyclic and linear gadolinium chelates: investigation of transmetallation effect on the zinc-dependent metallopeptidase angiotensin-converting enzyme. J Magn Reson Imaging 1998;8:695–702 doi:10.1002/jmri.1880080328 pmid:9626889
    CrossRefPubMed
  40. 40.↵
    1. Aime S,
    2. Caravan P
    . Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging 2009;30:1259–67 doi:10.1002/jmri.21969 pmid:19938038
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Altum E,
    2. Semelka RC,
    3. Cakit C
    . Nephrogenic systemic fibrosis and management of high-risk patients. Acad Radiol 2009;16:897–905 doi:10.1016/j.acra.2009.01.001 pmid:19375360
    CrossRefPubMed
  42. 42.↵
    1. Quarles LD,
    2. Hartle JE 2nd.,
    3. Middleton JP, et al
    . Aluminum-induced DNA synthesis in osteoblasts: mediation by a G-protein coupled cation sensing mechanism. J Cell Biochem 1994;56:106–17 doi:10.1002/jcb.240560115 pmid:7806584
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Pałasz A,
    2. Czekaj P
    . Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim Pol 2000;47:1107–14 pmid:11996100
    PubMed
  44. 44.↵
    1. Feng X,
    2. Xia Q,
    3. Yuan L, et al
    . Impaired mitochondrial function and oxidative stress in rat cortical neurons: implications for gadolinium-induced neurotoxicity. Neurotoxicology 2010;31:391–98 doi:10.1016/j.neuro.2010.04.003 pmid:20398695
    CrossRefPubMed
  45. 45.↵
    1. Xia Q,
    2. Feng X,
    3. Huang H, et al
    . Gadolinium-induced oxidative stress triggers endoplasmic reticulum stress in rat cortical neurons. J Neurochem 2011;117:38–47 doi:10.1111/j.1471-4159.2010.07162.x pmid:21198628
    CrossRefPubMed
  46. 46.↵
    1. Spencer AJ,
    2. Wilson SA,
    3. Batchelor J, et al
    . Gadolinium chloride toxicity in the rat. Toxicol Pathol 1997;25:245–55 doi:10.1177/019262339702500301 pmid:9210255
    Abstract/FREE Full Text
  47. 47.↵
    1. Idée JM,
    2. Port M,
    3. Medina C, et al
    . Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review. Toxicology 2008;248:77–88 doi:10.1016/j.tox.2008.03.012 pmid:18440117
    CrossRefPubMedWeb of Science
  48. 48.↵
    1. Piera-Velazquez S,
    2. Louneva N,
    3. Fertala J, et al
    . Persistent activation of dermal fibroblasts from patients with gadolinium-associated nephrogenic systemic fibrosis. Ann Rheum Dis 2010;69:2017–23 doi:10.1136/ard.2009.127761 pmid:20570839
    Abstract/FREE Full Text
  49. 49.↵
    1. Bhagavathula N,
    2. Dame MK,
    3. DaSilva M, et al
    . Fibroblast response to gadolinium: role for platelet-derived growth factor receptor. Invest Radiol 2010;45:769–77 doi:10.1097/RLI.0b013e3181e943d2 pmid:20714270
    CrossRefPubMed
  50. 50.↵
    1. Edward M,
    2. Quinn JA,
    3. Burden AD, et al
    . Effect of different classes of gadolinium-based contrast agents on control and nephrogenic systemic fibrosis-derived fibroblast proliferation. Radiology 2010;256:735–43 doi:10.1148/radiol.10091131 pmid:20663970
    CrossRefPubMedWeb of Science
  51. 51.↵
    1. Varani J,
    2. DaSilva M,
    3. Warner RL, et al
    . Effects of gadolinium-based magnetic resonance imaging contrast agents on human skin in organ culture and human skin fibroblasts. Invest Radiol 2009;44:74–81 doi:10.1097/RLI.0b013e31818f76b5 pmid:19077912
    CrossRefPubMedWeb of Science
  52. 52.↵
    1. Christensen KN,
    2. Lee CU,
    3. Hanley MM, et al
    . Quantification of gadolinium in fresh skin and serum samples from patients with nephrogenic systemic fibrosis. J Am Dermatol 2011;64:91–96 doi:10.1016/j.jaad.2009.12.044 pmid:21036418
    CrossRefPubMed
  53. 53.↵
    1. Cowper SE,
    2. Bucala R,
    3. Leboit PE
    . Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: setting the record straight. Semin Arthritis Rheum 2006;35:208–10 doi:10.1016/j.semarthrit.2005.09.005 pmid:16461067
    CrossRefPubMedWeb of Science
  54. 54.↵
    1. Gibby WA,
    2. Gibby KA,
    3. Gibby WA
    . Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by inductively coupled plasma atomic emission spectroscopy. Invest Radiol 2004;39:138–42 doi:10.1097/01.rli.0000112789.57341.01 pmid:15076005
    CrossRefPubMed
  55. 55.↵
    1. White GW,
    2. Gibby WA,
    3. Tweedle MF
    . Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Invest Radiol 2006;41:272–78 doi:10.1097/01.rli.0000186569.32408.95 pmid:16481910
    CrossRefPubMedWeb of Science
  56. 56.↵
    1. Darrah TH,
    2. Prutsman-Pfeiffer JJ,
    3. Poreda RJ, et al
    . Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 2009;1:479–88 doi:10.1039/b905145g pmid:21305156
    CrossRefPubMedWeb of Science
  57. 57.↵
    1. Rocklage SM,
    2. Worah D,
    3. Kim SH
    . Metal ion release from paramagnetic chelates: what is tolerable? Magn Reson Med 1991;22:216–21; discussion 229–32 doi:10.1002/mrm.1910220211 pmid:1812349
    CrossRefPubMed
  58. 58.↵
    1. Abraham JL,
    2. Thakral C,
    3. Skov L, et al
    . Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis. Br J Dermatol 2008;158:273–80 pmid:18067485
    PubMedWeb of Science
  59. 59.↵
    1. Xia D,
    2. Davis RL,
    3. Crawford JA, et al
    . Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol 2010;51:1126–36 doi:10.3109/02841851.2010.515614 pmid:20868305
    Abstract/FREE Full Text
  60. 60.↵
    1. Sanyal S,
    2. Marckmann P,
    3. Scherer S, et al
    . Multiorgan gadolinium (Gd) deposition and fibrosis in a patient with nephrogenic systemic fibrosis: an autopsy-based review. Nephrol Dial Transplant 2011;26:3616–26 doi:10.1093/ndt/gfr085 pmid:21441397
    Abstract/FREE Full Text
  61. 61.↵
    1. Ogi S,
    2. Fukumitsu N,
    3. Tsuchida D, et al
    . Imaging of bilateral striopallidodentate calcinosis. Clin Nucl Med 2002;27:721–24 doi:10.1097/00003072-200210000-00008 pmid:12352115
    CrossRefPubMed
  62. 62.↵
    1. Fretellier N,
    2. Idée JM,
    3. Dencausse A, et al
    . Comparative in vivo dissociation of gadolinium chelates in renally impaired rats: a relaxometry study. Invest Radiol 2011;46:292–300 doi:10.1097/RLI.0b013e3182056ccf pmid:21263333
    CrossRefPubMed
  63. 63.↵
    1. Schroeder JA,
    2. Weingart C,
    3. Coras B, et al
    . Ultrastructural evidence of dermal gadolinium deposits in a patient with nephrogenic systemic fibrosis and end-stage renal disease. Clin J Am Soc Nephrol 2008;3:968–75 doi:10.2215/CJN.00100108 pmid:18385397
    Abstract/FREE Full Text
  64. 64.↵
    1. Thakral C,
    2. Abraham JL
    . Gadolinium-induced nephrogenic systemic fibrosis is associated with insoluble Gd deposits in tissues: in vivo transmetallation confirmed by microanalysis. J Cutan Pathol 2009;36:1244–54 doi:10.1111/j.1600-0560.2009.01283.x pmid:19602073
    CrossRefPubMedWeb of Science
  65. 65.↵
    1. Ray DE,
    2. Holton JL,
    3. Nolan CC, et al
    . Neurotoxic potential of gadodiamide after injection into the lateral cerebral ventricle of rats. AJNR Am J Neuroradiol 1998;19:1455–62 pmid:9763378
    Abstract
  66. 66.↵
    1. Roman-Goldstein SM,
    2. Barnett PA,
    3. McCormick CI, et al
    . Effects of gadopentetate dimeglumine administration after osmotic blood-brain barrier disruption: toxicity and MR imaging findings. AJNR Am J Neuroradiol 1991;12:885–90 pmid:1950917
    Abstract/FREE Full Text
  67. 67.↵
    Gadolinium Toxicity: A Survey of the Chronic Effects of Retained Gadolinium from Contrast MRIs. https://gdtoxicity.files.wordpress.com/2014/09/gd-symptom-survey.pdf. Accessed September 1, 2015.
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 37 (7)
American Journal of Neuroradiology
Vol. 37, Issue 7
1 Jul 2016
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
J. Ramalho, R.C. Semelka, M. Ramalho, R.H. Nunes, M. AlObaidy, M. Castillo
Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update
American Journal of Neuroradiology Jul 2016, 37 (7) 1192-1198; DOI: 10.3174/ajnr.A4615

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update
J. Ramalho, R.C. Semelka, M. Ramalho, R.H. Nunes, M. AlObaidy, M. Castillo
American Journal of Neuroradiology Jul 2016, 37 (7) 1192-1198; DOI: 10.3174/ajnr.A4615
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Conclusions
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Is Contrast Medium Really Needed for Follow-up MRI of Untreated Intracranial Meningiomas?
  • Conjugates of neuroprotective chaperone L-PGDS provide MRI contrast for detection of amyloid {beta}-rich regions in live Alzheimers Disease mouse model brain
  • Safety of Gadolinium-Based Contrast Agents in Patients with Stage 4 and 5 Chronic Kidney Disease: a Radiologists Perspective
  • Signal Hyperintensity on Unenhanced T1-Weighted Brain and Cervical Spinal Cord MR Images after Multiple Doses of Linear Gadolinium-Based Contrast Agent
  • Fatal gadolinium-induced encephalopathy following accidental intrathecal administration: a case report and a comprehensive evidence-based review
  • Brain Tumor-Enhancement Visualization and Morphometric Assessment: A Comparison of MPRAGE, SPACE, and VIBE MRI Techniques
  • Gadolinium Deposition in Deep Brain Structures: Relationship with Dose and Ionization of Linear Gadolinium-Based Contrast Agents
  • What Have We Learned from Perfusion MRI in Multiple Sclerosis?
  • Placental physiology monitored by hyperpolarized dynamic 13C magnetic resonance
  • Skin changes after a magnetic resonance imaging scan
  • Redefining the Pulvinar Sign in Fabry Disease
  • Cumulative Dose of Macrocyclic Gadolinium-Based Contrast Agent Improves Detection of Enhancing Lesions in Patients with Multiple Sclerosis
  • GBCAs and Risk for Nephrogenic Systemic Fibrosis: A Literature Review
  • Appropriate Minimal Dose of Gadobutrol for 3D Time-Resolved MRA of the Supra-Aortic Arteries: Comparison with Conventional Single-Phase High-Resolution 3D Contrast-Enhanced MRA
  • Prolactin Receptor-Mediated Internalization of Imaging Agents Detects Epithelial Ovarian Cancer with Enhanced Sensitivity and Specificity
  • Do Gadolinium-Based Contrast Agents Affect 18F-FDG PET/CT Uptake in the Dentate Nucleus and the Globus Pallidus? A Pilot Study
  • Evaluation of Encephaloduroarteriosynangiosis Efficacy Using Probabilistic Independent Component Analysis Applied to Dynamic Susceptibility Contrast Perfusion MRI
  • Intracranial Arteriovenous Shunting: Detection with Arterial Spin-Labeling and Susceptibility-Weighted Imaging Combined
  • Addressing Concerns Regarding the Use of Gadolinium in a Standardized MRI Protocol for the Diagnosis and Follow-Up of Multiple Sclerosis
  • Macrocyclic Gadolinium-Based Contrast Agents Do Not Cause Hyperintensity in the Dentate Nucleus
  • Reply:
  • Crossref (351)
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)
    Victor Aboyans, Jean-Baptiste Ricco, Marie-Louise E L Bartelink, Martin Björck, Marianne Brodmann, Tina Cohnert, Jean-Philippe Collet, Martin Czerny, Marco De Carlo, Sebastian Debus, Christine Espinola-Klein, Thomas Kahan, Serge Kownator, Lucia Mazzolai, A Ross Naylor, Marco Roffi, Joachim Röther, Muriel Sprynger, Michal Tendera, Gunnar Tepe, Maarit Venermo, Charalambos Vlachopoulos, Ileana Desormais, Petr Widimsky, Philippe Kolh, Stefan Agewall, Héctor Bueno, Antonio Coca, Gert J De Borst, Victoria Delgado, Florian Dick, Cetin Erol, Marc Ferrini, Stavros Kakkos, Hugo A Katus, Juhani Knuuti, Jes Lindholt, Heinrich Mattle, Piotr Pieniazek, Massimo Francesco Piepoli, Dierk Scheinert, Horst Sievert, Iain Simpson, Jakub Sulzenko, Juan Tamargo, Lale Tokgozoglu, Adam Torbicki, Nikolaos Tsakountakis, José Tuñón, Melina Vega de Ceniga, Stephan Windecker, Jose Luis Zamorano, Stephan Windecker, Victor Aboyans, Stefan Agewall, Emanuele Barbato, Héctor Bueno, Antonio Coca, Jean-Philippe Collet, Ioan Mircea Coman, Veronica Dean, Victoria Delgado, Donna Fitzsimons, Oliver Gaemperli, Gerhard Hindricks, Bernard Iung, Peter Juni, Hugo A Katus, Juhani Knuuti, Patrizio Lancellotti, Christophe Leclercq, Theresa McDonagh, Massimo Francesco Piepoli, Piotr Ponikowski, Dimitrios J Richter, Marco Roffi, Evgeny Shlyakhto, Iain A Simpson, Jose Luis Zamorano, Parounak H Zelveian, Markus Haumer, Dzmitry Isachkin, Tine De Backer, Mirza Dilic, Ivo Petrov, Majda Vrkic Kirhmajer, Debora Karetova, Eva Prescott, Hamdy Soliman, Ants Paapstel, Kimmo Makinen, Slavco Tosev, Emmanuel Messas, Zurab Pagava, Oliver J Müller, Katerina K Naka, Zoltán Járai, Thorbjorn Gudjonsson, Michael Jonas, Salvatore Novo, Pranvera Ibrahimi, Olga Lunegova, Vilnis Dzerve, Nerijus Misonis, Jean Beissel, Elton Pllaha, Mustapha Taberkant, Torbjørn Bakken, Rui Teles, Daniel Lighezan, Alexandra Konradi, Marco Zavatta, Juraj Madaric, Zlatko Fras, Lorenzo Silva Melchor, Ulf Näslund, Beatrice Amann-Vesti, Agu Obiekezie
    European Heart Journal 2018 39 9
  • Editor's Choice – 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)
    Victor Aboyans, Jean-Baptiste Ricco, Marie-Louise E.L. Bartelink, Martin Björck, Marianne Brodmann, Tina Cohnert, Jean-Philippe Collet, Martin Czerny, Marco De Carlo, Sebastian Debus, Christine Espinola-Klein, Thomas Kahan, Serge Kownator, Lucia Mazzolai, A. Ross Naylor, Marco Roffi, Joachim Röther, Muriel Sprynger, Michal Tendera, Gunnar Tepe, Maarit Venermo, Charalambos Vlachopoulos, Ileana Desormais, Document Reviewers, Petr Widimsky, Philippe Kolh, Stefan Agewall, Héctor Bueno, Antonio Coca, Gert J. De Borst, Victoria Delgado, Florian Dick, Cetin Erol, Marc Ferrini, Stavros Kakkos, Hugo A. Katus, Juhani Knuuti, Jes Lindholt, Heinrich Mattle, Piotr Pieniazek, Massimo Francesco Piepoli, Dierk Scheinert, Horst Sievert, Iain Simpson, Jakub Sulzenko, Juan Tamargo, Lale Tokgozoglu, Adam Torbicki, Nikolaos Tsakountakis, José Tuñón, Melina Vega de Ceniga, Stephan Windecker, Jose Luis Zamorano
    European Journal of Vascular and Endovascular Surgery 2018 55 3
  • Magnetic nanoparticles in nanomedicine: a review of recent advances
    Kai Wu, Diqing Su, Jinming Liu, Renata Saha, Jian-Ping Wang
    Nanotechnology 2019 30 50
  • Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives
    Mike Jeon, Mackenzie V. Halbert, Zachary R. Stephen, Miqin Zhang
    Advanced Materials 2021 33 23
  • Application of Nanomaterials in Biomedical Imaging and Cancer Therapy
    Sarkar Siddique, James C. L. Chow
    Nanomaterials 2020 10 9
  • Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents
    Thomas J. Clough, Lijun Jiang, Ka-Leung Wong, Nicholas J. Long
    Nature Communications 2019 10 1
  • Cryptic footprints of rare earth elements on natural resources and living organisms
    Muhammad Adeel, Jie Yinn Lee, Muhammad Zain, Muhammad Rizwan, Aamir Nawab, M.A. Ahmad, Muhammad Shafiq, Hao Yi, Ghulam Jilani, Rabia Javed, R. Horton, Yukui Rui, Daniel C.W. Tsang, Baoshan Xing
    Environment International 2019 127
  • Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review
    Majid Nooshkam, Mehdi Varidi, Deepak Kumar Verma
    Food Research International 2020 131
  • Magnetic iron oxide nanoparticles asT1contrast agents for magnetic resonance imaging
    Y. Bao, J. A. Sherwood, Z. Sun
    Journal of Materials Chemistry C 2018 6 6
  • Effects of rare earth elements on the environment and human health: A literature review
    Kyung-Taek Rim
    Toxicology and Environmental Health Sciences 2016 8 3

More in this TOC Section

PATIENT SAFETY

  • Safety of Intrathecal Gadobutrol in Various Doses
  • Impact of Kidney Function on CNS Gadolinium Deposition in Patients Receiving Repeated Doses of Gadobutrol
  • Contrast-Induced Acute Kidney Injury in Radiologic Management of Acute Ischemic Stroke in the Emergency Setting
Show more PATIENT SAFETY

ADULT BRAIN

  • Diagnostic Neuroradiology of Monoclonal Antibodies
  • Cerebral ADC Changes in Fabry Disease
  • ML for Glioma Molecular Subtype Prediction
Show more ADULT BRAIN

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

Special Collections

  • AJNR Awards
  • ASNR Foundation Special Collection
  • Most Impactful AJNR Articles
  • Photon-Counting CT
  • Spinal CSF Leak Articles (Jan 2020-June 2024)

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire